The DNS resolution functionality in the CIFS implementation in the Linux kernel before 2.6.35, when CONFIG_CIFS_DFS_UPCALL is enabled, relies on a user's keyring for the dns_resolver upcall in the cifs.upcall userspace helper, which allows local users to spoof the results of DNS queries and perform arbitrary CIFS mounts via vectors involving an add_key call, related to a "cache stuffing" issue and MS-DFS referrals.
An issue was discovered in the Linux kernel 4.18 through 5.10.16, as used by Xen. The backend allocation (aka be-alloc) mode of the drm_xen_front drivers was not meant to be a supported configuration, but this wasn't stated accordingly in its support status entry.
drivers/infiniband/ulp/rtrs/rtrs-clt.c in the Linux kernel before 5.16.12 has a double free related to rtrs_clt_dev_release.
A flaw was found in the Linux kernel’s driver for the ASIX AX88179_178A-based USB 2.0/3.0 Gigabit Ethernet Devices. The vulnerability contains multiple out-of-bounds reads and possible out-of-bounds writes.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 is vulnerable to a buffer overflow, which could allow an authenticated local attacker to execute arbitrary code on the system as root. IBM X-Force ID: 158519.
An issue was discovered in the Linux kernel before 4.14.16. There is a use-after-free in net/sctp/socket.c for a held lock after a peel off, aka CID-a0ff660058b8.
The BPF subsystem in the Linux kernel before 4.17 mishandles situations with a long jump over an instruction sequence where inner instructions require substantial expansions into multiple BPF instructions, leading to an overflow. This affects kernel/bpf/core.c and net/core/filter.c.
In the Linux kernel, the following vulnerability has been resolved: gtp: fix use-after-free and null-ptr-deref in gtp_genl_dump_pdp() The gtp_net_ops pernet operations structure for the subsystem must be registered before registering the generic netlink family. Syzkaller hit 'general protection fault in gtp_genl_dump_pdp' bug: general protection fault, probably for non-canonical address 0xdffffc0000000002: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017] CPU: 1 PID: 5826 Comm: gtp Not tainted 6.8.0-rc3-std-def-alt1 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-alt1 04/01/2014 RIP: 0010:gtp_genl_dump_pdp+0x1be/0x800 [gtp] Code: c6 89 c6 e8 64 e9 86 df 58 45 85 f6 0f 85 4e 04 00 00 e8 c5 ee 86 df 48 8b 54 24 18 48 b8 00 00 00 00 00 fc ff df 48 c1 ea 03 <80> 3c 02 00 0f 85 de 05 00 00 48 8b 44 24 18 4c 8b 30 4c 39 f0 74 RSP: 0018:ffff888014107220 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000002 RSI: 0000000000000000 RDI: 0000000000000000 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: ffff88800fcda588 R14: 0000000000000001 R15: 0000000000000000 FS: 00007f1be4eb05c0(0000) GS:ffff88806ce80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1be4e766cf CR3: 000000000c33e000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> ? show_regs+0x90/0xa0 ? die_addr+0x50/0xd0 ? exc_general_protection+0x148/0x220 ? asm_exc_general_protection+0x22/0x30 ? gtp_genl_dump_pdp+0x1be/0x800 [gtp] ? __alloc_skb+0x1dd/0x350 ? __pfx___alloc_skb+0x10/0x10 genl_dumpit+0x11d/0x230 netlink_dump+0x5b9/0xce0 ? lockdep_hardirqs_on_prepare+0x253/0x430 ? __pfx_netlink_dump+0x10/0x10 ? kasan_save_track+0x10/0x40 ? __kasan_kmalloc+0x9b/0xa0 ? genl_start+0x675/0x970 __netlink_dump_start+0x6fc/0x9f0 genl_family_rcv_msg_dumpit+0x1bb/0x2d0 ? __pfx_genl_family_rcv_msg_dumpit+0x10/0x10 ? genl_op_from_small+0x2a/0x440 ? cap_capable+0x1d0/0x240 ? __pfx_genl_start+0x10/0x10 ? __pfx_genl_dumpit+0x10/0x10 ? __pfx_genl_done+0x10/0x10 ? security_capable+0x9d/0xe0
Buffer overflow in the ecryptfs_uid_hash macro in fs/ecryptfs/messaging.c in the eCryptfs subsystem in the Linux kernel before 2.6.35 might allow local users to gain privileges or cause a denial of service (system crash) via unspecified vectors.
IBM DB2 High Performance Unload load for LUW 6.1, 6.1.0.1, 6.1.0.1 IF1, 6.1.0.2, 6.1.0.2 IF1, and 6.1.0.1 IF2 db2hpum_debug is a setuid root binary which trusts the PATH environment variable. A low privileged user can execute arbitrary commands as root by altering the PATH variable to point to a user controlled location. When a crash is induced the trojan gdb command is executed. IBM X-Force ID: 163488.
Improper Update of Reference Count vulnerability in net/sched of Linux Kernel allows local attacker to cause privilege escalation to root. This issue affects: Linux Kernel versions prior to 5.18; version 4.14 and later versions.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 is vulnerable to a buffer overflow, which could allow an authenticated local attacker to execute arbitrary code on the system as root. IBM X-Force ID: 155892.
The aufs module for the Linux kernel 3.x and 4.x does not properly restrict the mount namespace, which allows local users to gain privileges by mounting an aufs filesystem on top of a FUSE filesystem, and then executing a crafted setuid program.
The aufs module for the Linux kernel 3.x and 4.x does not properly maintain POSIX ACL xattr data, which allows local users to gain privileges by leveraging a group-writable setgid directory.
The SUNRPC subsystem in the Linux kernel through 5.17.2 can call xs_xprt_free before ensuring that sockets are in the intended state.
A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation. The nft_verdict_init() function allows positive values as drop error within the hook verdict, and hence the nf_hook_slow() function can cause a double free vulnerability when NF_DROP is issued with a drop error which resembles NF_ACCEPT. We recommend upgrading past commit f342de4e2f33e0e39165d8639387aa6c19dff660.
A flaw was found in the Linux kernel's implementation of Pressure Stall Information. While the feature is disabled by default, it could allow an attacker to crash the system or have other memory-corruption side effects.
A use-after-free flaw was found in the Linux kernel’s pipes functionality in how a user performs manipulations with the pipe post_one_notification() after free_pipe_info() that is already called. This flaw allows a local user to crash or potentially escalate their privileges on the system.
The block subsystem in the Linux kernel before 5.2 has a use-after-free that can lead to arbitrary code execution in the kernel context and privilege escalation, aka CID-c3e2219216c9. This is related to blk_mq_free_rqs and blk_cleanup_queue.
The ecryptfs_privileged_open function in fs/ecryptfs/kthread.c in the Linux kernel before 4.6.3 allows local users to gain privileges or cause a denial of service (stack memory consumption) via vectors involving crafted mmap calls for /proc pathnames, leading to recursive pagefault handling.
An issue was discovered in the Linux kernel before 5.0.19. The XFRM subsystem has a use-after-free, related to an xfrm_state_fini panic, aka CID-dbb2483b2a46.
The join_session_keyring function in security/keys/process_keys.c in the Linux kernel before 4.4.1 mishandles object references in a certain error case, which allows local users to gain privileges or cause a denial of service (integer overflow and use-after-free) via crafted keyctl commands.
An out-of-bounds access flaw was found in the Linux kernel's implementation of the eBPF code verifier in the way a user running the eBPF script calls dev_map_init_map or sock_map_alloc. This flaw allows a local user to crash the system or possibly escalate their privileges. The highest threat from this vulnerability is to confidentiality, integrity, as well as system availability.
An issue was discovered in the Linux kernel through 4.18.8. The vmacache_flush_all function in mm/vmacache.c mishandles sequence number overflows. An attacker can trigger a use-after-free (and possibly gain privileges) via certain thread creation, map, unmap, invalidation, and dereference operations.
Integer overflow in lib/asn1_decoder.c in the Linux kernel before 4.6 allows local users to gain privileges via crafted ASN.1 data.
The KEYS subsystem in the Linux kernel before 4.4 allows local users to gain privileges or cause a denial of service (BUG) via crafted keyctl commands that negatively instantiate a key, related to security/keys/encrypted-keys/encrypted.c, security/keys/trusted.c, and security/keys/user_defined.c.
In the Linux kernel before 5.4.2, the io_uring feature leads to requests that inadvertently have UID 0 and full capabilities, aka CID-181e448d8709. This is related to fs/io-wq.c, fs/io_uring.c, and net/socket.c. For example, an attacker can bypass intended restrictions on adding an IPv4 address to the loopback interface. This occurs because IORING_OP_SENDMSG operations, although requested in the context of an unprivileged user, are sometimes performed by a kernel worker thread without considering that context.
An issue was discovered in Eracent EPA Agent through 10.2.26. The agent executable, when installed for non-root operations (scanning), can be used to start external programs with elevated permissions because of an Untrusted Search Path.
In the Linux kernel before 5.3.4, a reference count usage error in the fib6_rule_suppress() function in the fib6 suppression feature of net/ipv6/fib6_rules.c, when handling the FIB_LOOKUP_NOREF flag, can be exploited by a local attacker to corrupt memory, aka CID-ca7a03c41753.
An authentication flaw in the AVPNC_RP service in Aviatrix VPN Client through 2.2.10 allows an attacker to gain elevated privileges through arbitrary code execution on Windows, Linux, and macOS.
In the Linux kernel 5.5.0 and newer, the bpf verifier (kernel/bpf/verifier.c) did not properly restrict the register bounds for 32-bit operations, leading to out-of-bounds reads and writes in kernel memory. The vulnerability also affects the Linux 5.4 stable series, starting with v5.4.7, as the introducing commit was backported to that branch. This vulnerability was fixed in 5.6.1, 5.5.14, and 5.4.29. (issue is aka ZDI-CAN-10780)
A flaw was found in the crypto subsystem of the Linux kernel before version kernel-4.15-rc4. The "null skcipher" was being dropped when each af_alg_ctx was freed instead of when the aead_tfm was freed. This can cause the null skcipher to be freed while it is still in use leading to a local user being able to crash the system or possibly escalate privileges.
An issue was discovered in xenvif_set_hash_mapping in drivers/net/xen-netback/hash.c in the Linux kernel through 4.18.1, as used in Xen through 4.11.x and other products. The Linux netback driver allows frontends to control mapping of requests to request queues. When processing a request to set or change this mapping, some input validation (e.g., for an integer overflow) was missing or flawed, leading to OOB access in hash handling. A malicious or buggy frontend may cause the (usually privileged) backend to make out of bounds memory accesses, potentially resulting in one or more of privilege escalation, Denial of Service (DoS), or information leaks.
In the Linux kernel, the following vulnerability has been resolved: fscache: delete fscache_cookie_lru_timer when fscache exits to avoid UAF The fscache_cookie_lru_timer is initialized when the fscache module is inserted, but is not deleted when the fscache module is removed. If timer_reduce() is called before removing the fscache module, the fscache_cookie_lru_timer will be added to the timer list of the current cpu. Afterwards, a use-after-free will be triggered in the softIRQ after removing the fscache module, as follows: ================================================================== BUG: unable to handle page fault for address: fffffbfff803c9e9 PF: supervisor read access in kernel mode PF: error_code(0x0000) - not-present page PGD 21ffea067 P4D 21ffea067 PUD 21ffe6067 PMD 110a7c067 PTE 0 Oops: Oops: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 1 UID: 0 PID: 0 Comm: swapper/1 Tainted: G W 6.11.0-rc3 #855 Tainted: [W]=WARN RIP: 0010:__run_timer_base.part.0+0x254/0x8a0 Call Trace: <IRQ> tmigr_handle_remote_up+0x627/0x810 __walk_groups.isra.0+0x47/0x140 tmigr_handle_remote+0x1fa/0x2f0 handle_softirqs+0x180/0x590 irq_exit_rcu+0x84/0xb0 sysvec_apic_timer_interrupt+0x6e/0x90 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 RIP: 0010:default_idle+0xf/0x20 default_idle_call+0x38/0x60 do_idle+0x2b5/0x300 cpu_startup_entry+0x54/0x60 start_secondary+0x20d/0x280 common_startup_64+0x13e/0x148 </TASK> Modules linked in: [last unloaded: netfs] ================================================================== Therefore delete fscache_cookie_lru_timer when removing the fscahe module.
There exists a use-after-free vulnerability in the Linux kernel through io_uring and the IORING_OP_SPLICE operation. If IORING_OP_SPLICE is missing the IO_WQ_WORK_FILES flag, which signals that the operation won't use current->nsproxy, so its reference counter is not increased. This assumption is not always true as calling io_splice on specific files will call the get_uts function which will use current->nsproxy leading to invalidly decreasing its reference counter later causing the use-after-free vulnerability. We recommend upgrading to version 5.10.160 or above
An issue was discovered in the Linux kernel through 4.17.11, as used in Xen through 4.11.x. The xen_failsafe_callback entry point in arch/x86/entry/entry_64.S does not properly maintain RBX, which allows local users to cause a denial of service (uninitialized memory usage and system crash). Within Xen, 64-bit x86 PV Linux guest OS users can trigger a guest OS crash or possibly gain privileges.
An issue was discovered in the Linux kernel before 4.20.2. An out-of-bounds access exists in the function build_audio_procunit in the file sound/usb/mixer.c.
There is a vulnerability in the linux kernel versions higher than 5.2 (if kernel compiled with config params CONFIG_BPF_SYSCALL=y , CONFIG_BPF=y , CONFIG_CGROUPS=y , CONFIG_CGROUP_BPF=y , CONFIG_HARDENED_USERCOPY not set, and BPF hook to getsockopt is registered). As result of BPF execution, the local user can trigger bug in __cgroup_bpf_run_filter_getsockopt() function that can lead to heap overflow (because of non-hardened usercopy). The impact of attack could be deny of service or possibly privileges escalation.
IBM Security Guardium 11.2 stores user credentials in plain clear text which can be read by a local user. IBM X-Force ID: 195770.
ems_usb_start_xmit in drivers/net/can/usb/ems_usb.c in the Linux kernel through 5.17.1 has a double free.
A heap buffer overflow flaw was found in IPsec ESP transformation code in net/ipv4/esp4.c and net/ipv6/esp6.c. This flaw allows a local attacker with a normal user privilege to overwrite kernel heap objects and may cause a local privilege escalation threat.
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Always stop health timer during driver removal Currently, if teardown_hca fails to execute during driver removal, mlx5 does not stop the health timer. Afterwards, mlx5 continue with driver teardown. This may lead to a UAF bug, which results in page fault Oops[1], since the health timer invokes after resources were freed. Hence, stop the health monitor even if teardown_hca fails. [1] mlx5_core 0000:18:00.0: E-Switch: Unload vfs: mode(LEGACY), nvfs(0), necvfs(0), active vports(0) mlx5_core 0000:18:00.0: E-Switch: Disable: mode(LEGACY), nvfs(0), necvfs(0), active vports(0) mlx5_core 0000:18:00.0: E-Switch: Disable: mode(LEGACY), nvfs(0), necvfs(0), active vports(0) mlx5_core 0000:18:00.0: E-Switch: cleanup mlx5_core 0000:18:00.0: wait_func:1155:(pid 1967079): TEARDOWN_HCA(0x103) timeout. Will cause a leak of a command resource mlx5_core 0000:18:00.0: mlx5_function_close:1288:(pid 1967079): tear_down_hca failed, skip cleanup BUG: unable to handle page fault for address: ffffa26487064230 PGD 100c00067 P4D 100c00067 PUD 100e5a067 PMD 105ed7067 PTE 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 0 Comm: swapper/0 Tainted: G OE ------- --- 6.7.0-68.fc38.x86_64 #1 Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0013.121520200651 12/15/2020 RIP: 0010:ioread32be+0x34/0x60 RSP: 0018:ffffa26480003e58 EFLAGS: 00010292 RAX: ffffa26487064200 RBX: ffff9042d08161a0 RCX: ffff904c108222c0 RDX: 000000010bbf1b80 RSI: ffffffffc055ddb0 RDI: ffffa26487064230 RBP: ffff9042d08161a0 R08: 0000000000000022 R09: ffff904c108222e8 R10: 0000000000000004 R11: 0000000000000441 R12: ffffffffc055ddb0 R13: ffffa26487064200 R14: ffffa26480003f00 R15: ffff904c108222c0 FS: 0000000000000000(0000) GS:ffff904c10800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffa26487064230 CR3: 00000002c4420006 CR4: 00000000007706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <IRQ> ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? exc_page_fault+0x175/0x180 ? asm_exc_page_fault+0x26/0x30 ? __pfx_poll_health+0x10/0x10 [mlx5_core] ? __pfx_poll_health+0x10/0x10 [mlx5_core] ? ioread32be+0x34/0x60 mlx5_health_check_fatal_sensors+0x20/0x100 [mlx5_core] ? __pfx_poll_health+0x10/0x10 [mlx5_core] poll_health+0x42/0x230 [mlx5_core] ? __next_timer_interrupt+0xbc/0x110 ? __pfx_poll_health+0x10/0x10 [mlx5_core] call_timer_fn+0x21/0x130 ? __pfx_poll_health+0x10/0x10 [mlx5_core] __run_timers+0x222/0x2c0 run_timer_softirq+0x1d/0x40 __do_softirq+0xc9/0x2c8 __irq_exit_rcu+0xa6/0xc0 sysvec_apic_timer_interrupt+0x72/0x90 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 RIP: 0010:cpuidle_enter_state+0xcc/0x440 ? cpuidle_enter_state+0xbd/0x440 cpuidle_enter+0x2d/0x40 do_idle+0x20d/0x270 cpu_startup_entry+0x2a/0x30 rest_init+0xd0/0xd0 arch_call_rest_init+0xe/0x30 start_kernel+0x709/0xa90 x86_64_start_reservations+0x18/0x30 x86_64_start_kernel+0x96/0xa0 secondary_startup_64_no_verify+0x18f/0x19b ---[ end trace 0000000000000000 ]---
NVIDIA vGPU driver contains a vulnerability in the guest kernel mode driver and Virtual GPU Manager (vGPU plugin), in which an input length is not validated, which may lead to information disclosure, tampering of data or denial of service. This affects vGPU version 12.x (prior to 12.2) and version 11.x (prior to 11.4).
Insufficient input validation in Intel(R) SGX SDK multiple Linux and Windows versions may allow an authenticated user to enable information disclosure, escalation of privilege or denial of service via local access.
Insufficient initialization in Intel(R) SGX SDK Windows versions 2.4.100.51291 and earlier, and Linux versions 2.6.100.51363 and earlier, may allow an authenticated user to enable information disclosure, escalation of privilege or denial of service via local access.
NVIDIA GPU Display Driver for Windows and Linux, all versions, contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape or IOCTL in which user-mode clients can access legacy privileged APIs, which may lead to denial of service, escalation of privileges, and information disclosure.
NVIDIA vGPU software contains a vulnerability in the guest kernel mode driver and Virtual GPU manager (vGPU plugin), in which an input length is not validated, which may lead to information disclosure, tampering of data, or denial of service. This affects vGPU version 12.x (prior to 12.2), version 11.x (prior to 11.4) and version 8.x (prior 8.7).
In rndis_query_oid in drivers/net/wireless/rndis_wlan.c in the Linux kernel through 6.1.5, there is an integer overflow in an addition.
mm/memory.c in the Linux kernel before 4.1.4 mishandles anonymous pages, which allows local users to gain privileges or cause a denial of service (page tainting) via a crafted application that triggers writing to page zero.
A flaw was found in the Linux kernel's ext4 filesystem. A local user can cause an out-of-bounds write and a denial of service or unspecified other impact is possible by mounting and operating a crafted ext4 filesystem image.