Missing Size Checks in Bluetooth HCI over SPI. Zephyr versions >= v1.14.2, >= v2.2.0 contain Improper Handling of Length Parameter Inconsistency (CWE-130). For more information, see https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-hg2w-62p6-g67c
Improper handling of the full-buffer case in the Zephyr Bluetooth implementation can result in memory corruption. This issue affects: zephyrproject-rtos zephyr version 2.2.0 and later versions, and version 1.14.0 and later versions.
RCE/DOS: Linked-list corruption leading to large out-of-bounds write while sorting for forged fragment list in Zephyr. Zephyr versions >= >=2.4.0 contain Out-of-bounds Write (CWE-787). For more information, see https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-fj4r-373f-9456
In Zephyr bluetooth mesh core stack, an out-of-bound write vulnerability can be triggered during provisioning.
Buffer overflow in usb device class. Zephyr versions >= v2.6.0 contain Heap-based Buffer Overflow (CWE-122). For more information, see https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-fm6v-8625-99jf
Two potential buffer overflow vulnerabilities at the following locations in the Zephyr eS-WiFi driver source code.
usb device bluetooth class includes a buffer overflow related to implementation of net_buf_add_mem.
Potential buffer overflows in the Bluetooth subsystem due to asserts being disabled in /subsys/bluetooth/host/hci_core.c
Buffer Access with Incorrect Length Value in zephyr. Zephyr versions >= >=2.5.0 contain Buffer Access with Incorrect Length Value (CWE-805). For more information, see https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-8q65-5gqf-fmw5
Integer Underflow in Zephyr in IEEE 802154 Fragment Reassembly Header Removal. Zephyr versions >= >=2.4.0 contain Integer Overflow to Buffer Overflow (CWE-680). For more information, see https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-w44j-66g7-xw99
An malicious BLE device can cause buffer overflow by sending malformed advertising packet BLE device using Zephyr OS, leading to DoS or potential RCE on the victim BLE device.
Potential buffer overflow vulnerability in the Zephyr IEEE 802.15.4 nRF 15.4 driver
Union variant confusion allows any malicious BT controller to execute arbitrary code on the Zephyr host.
Improper Input Frame Validation in ieee802154 Processing. Zephyr versions >= v1.14.2, >= v2.2.0 contain Stack-based Buffer Overflow (CWE-121), Heap-based Buffer Overflow (CWE-122). For more information, see https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-3gvq-h42f-v3c7
Potential buffer overflow vulnerability in the Zephyr CAN bus subsystem
Unchecked length coming from user input in settings shell
can: out of bounds in remove_rx_filter function
Buffer overflow in Zephyr USB DFU DNLOAD. Zephyr versions >= v2.5.0 contain Heap-based Buffer Overflow (CWE-122). For more information, see https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-c3gr-hgvr-f363
Possible variant of CVE-2021-3434 in function le_ecred_reconf_req.
Stack based buffer overflow in le_ecred_conn_req(). Zephyr versions >= v2.5.0 Stack-based Buffer Overflow (CWE-121). For more information, see https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-8w87-6rfp-cfrm
The bluetooth HCI host layer logic not clearing a global reference to a semaphore after synchronously sending HCI commands may allow a malicious HCI Controller to cause the use of a dangling reference in the host layer, leading to a crash (DoS) or potential RCE on the Host layer.
In subsys/net/ip/tcp.c , function tcp_flags , when the incoming parameter flags is ECN or CWR , the buf will out-of-bounds write a byte zero.
The RNDIS USB device class includes a buffer overflow vulnerability. Zephyr versions >= v2.6.0 contain Heap-based Buffer Overflow (CWE-122). For more information, see https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-hvfp-w4h8-gxvj
FS: Buffer Overflow when enabling Long File Names in FAT_FS and calling fs_stat. Zephyr versions >= v1.14.2, >= v2.3.0 contain Stack-based Buffer Overflow (CWE-121). For more information, see https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-7fhv-rgxr-x56h
Malformed SPI in response for eswifi can corrupt kernel memory. Zephyr versions >= 1.14.2, >= 2.3.0 contain Heap-based Buffer Overflow (CWE-122). For more information, see https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-hx4p-j86p-2mhr
Out-of-bounds Write in the USB Mass Storage memoryWrite handler with unaligned Sizes See NCC-ZEP-024, NCC-ZEP-025, NCC-ZEP-026 This issue affects: zephyrproject-rtos zephyr version 1.14.1 and later versions. version 2.1.0 and later versions.
In DA, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege, if an attacker has physical access to the device, with no additional execution privileges needed. User interaction is needed for exploitation. Patch ID: ALPS09915215; Issue ID: MSV-3801.
In gnss service, there is a possible out of bounds write due to an incorrect bounds check. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10010441; Issue ID: MSV-3967.
In gnss service, there is a possible out of bounds write due to an incorrect bounds check. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10010443; Issue ID: MSV-3966.
No proper validation of the length of user input in olcp_ind_handler in zephyr/subsys/bluetooth/services/ots/ots_client.c.
BT: HCI: adv_ext_report Improper discarding in adv_ext_report
In ascs_cp_rsp_add in /subsys/bluetooth/audio/ascs.c, an unchecked tailroom could lead to a global buffer overflow.
In utf8_trunc in zephyr/lib/utils/utf8.c, last_byte_p can point to one byte before the string pointer if the string is empty.
No proper validation of the length of user input in olcp_ind_handler in zephyr/subsys/bluetooth/services/ots/ots_client.c.
BT: Classic: SDP OOB access in get_att_search_list
BT: Unchecked user input in bap_broadcast_assistant
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D6200 before 1.1.00.24, R6700v2 before 1.1.0.42, R6800 before 1.1.0.42, and R6900v2 before 1.1.0.42.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D6200 before 1.1.00.24, R6700v2 before 1.1.0.42, R6800 before 1.1.0.42, and R6900v2 before 1.1.0.42.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D6200 before 1.1.00.24, R6700v2 before 1.1.0.42, R6800 before 1.1.0.42, and R6900v2 before 1.1.0.42.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D6200 before 1.1.00.24, R6700v2 before 1.1.0.42, R6800 before 1.1.0.42, and R6900v2 before 1.1.0.42.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D6200 before 1.1.00.24, R6700v2 before 1.1.0.42, R6800 before 1.1.0.42, and R6900v2 before 1.1.0.42.
The Broadcom wl WiFi driver is vulnerable to a heap buffer overflow. By supplying a vendor information element with a data length larger than 32 bytes, a heap buffer overflow is triggered in wlc_wpa_sup_eapol. In the worst case scenario, by sending specially-crafted WiFi packets, a remote, unauthenticated attacker may be able to execute arbitrary code on a vulnerable system. More typically, this vulnerability will result in denial-of-service conditions.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D6200 before 1.1.00.24, R6700v2 before 1.1.0.42, R6800 before 1.1.0.42, and R6900v2 before 1.1.0.42.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D6200 before 1.1.00.24, R6020 before 1.1.00.26, R6080 before 1.1.00.26; R6700v2 before 1.1.0.42, R6800 before 1.1.0.42, and R6900v2 before 1.1.0.42.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects EX6150v2 before 1.0.1.54, R6400 before 1.0.1.24, R6400v2 before 1.0.2.32, R6700 before 1.0.1.22, R6900 before 1.0.1.22, R7000 before 1.0.9.10, R7000P before 1.2.0.22, R6900P before 1.2.0.22, R7100LG before 1.0.0.32, R7300DST before 1.0.0.54, R7900 before 1.0.1.18, R8000 before 1.0.3.48, R8300 before 1.0.2.106, R8500 before 1.0.2.106, R6100 before 1.0.1.16, WNDR4300v2 before 1.0.0.48, WNDR4500v3 before 1.0.0.48, and WNR2000v5 before 1.0.0.58.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D6200 before 1.1.00.24, R6700v2 before 1.1.0.42, R6800 before 1.1.0.42, and R6900v2 before 1.1.0.42.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D6200 before 1.1.00.24. R6700v2 before 1.1.0.42, R6800 before 1.1.0.42, and R6900v2 before 1.1.0.42.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D6200 before 1.1.00.24, R6700v2 before 1.1.0.42, R6800 before 1.1.0.42, and R6900v2 before 1.1.0.42.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D6200 before 1.1.00.24, R6700v2 before 1.1.0.42, R6800 before 1.1.0.42, and R6900v2 before 1.1.0.42.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects R6020 before 1.0.0.30, R6080 before 1.0.0.30, R6700v2 before 1.1.0.42, R6800 before 1.1.0.42, and R6900v2 before 1.1.0.42.