NVIDIA GPU Display Driver for Windows and Linux, all versions, contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape or IOCTL in which improper validation of a user pointer may lead to denial of service.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability which could allow a privileged attacker to escalate permissions. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA’s distribution of the Data Plane Development Kit (MLNX_DPDK) contains a vulnerability in the network stack, where error recovery is not handled properly, which can allow a remote attacker to cause denial of service and some impact to data integrity and confidentiality.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability in the ECC layer, where an unprivileged regular user can cause an out-of-bounds write, which may lead to denial of service and data tampering.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability in the kernel mode layer, where an unprivileged regular user on the network can cause an out-of-bounds write through a specially crafted shader, which may lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering. The scope of the impact may extend to other components.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape, where the product receives input or data, but does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly, which may lead to denial of service.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape, where the product receives input or data, but does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly, which may lead to denial of service or data tampering.
NVIDIA vGPU software contains a vulnerability in the GPU kernel driver of the vGPU Manager for all supported hypervisors, where a user of the guest OS can cause an improper input validation by compromising the guest OS kernel. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service, and information disclosure.
NVIDIA Jetson Linux Driver Package contains a vulnerability in the Cboot blob_decompress function, where insufficient validation of untrusted data may allow a local attacker with elevated privileges to cause a memory buffer overflow, which may lead to code execution, limited loss of Integrity, and limited denial of service. The scope of impact can extend to other components.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the DirectX11 user mode driver (nvwgf2um/x.dll), where an unauthorized attacker on the network can cause an out-of-bounds write through a specially crafted shader, which may lead to code execution to cause denial of service, escalation of privileges, information disclosure, and data tampering. The scope of the impact may extend to other components.
NVIDIA Virtual GPU Manager contains a vulnerability in the vGPU plugin, in which an input data size is not validated, which may lead to tampering or denial of service. This affects vGPU version 8.x (prior to 8.4), version 9.x (prior to 9.4) and version 10.x (prior to 10.3).
NVIDIA Virtual GPU Manager contains a vulnerability in the vGPU plugin, in which an input data size is not validated, which may lead to tampering or denial of service. This affects vGPU version 8.x (prior to 8.5), version 10.x (prior to 10.4) and version 11.0.
NVIDIA Virtual GPU Manager contains a vulnerability in the vGPU plugin and the host driver kernel module, in which the potential exists to write to a memory location that is outside the intended boundary of the frame buffer memory allocated to guest operating systems, which may lead to denial of service or information disclosure. This affects vGPU version 8.x (prior to 8.5), version 10.x (prior to 10.4) and version 11.0.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape, where improper input validation can cause denial of service.
NVIDIA Virtual GPU Manager contains a vulnerability in the vGPU plugin, in which an input data length is not validated, which may lead to tampering or denial of service. This affects vGPU version 8.x (prior to 8.5), version 10.x (prior to 10.4) and version 11.0.
NVIDIA DCGM contains a vulnerability in nvhostengine, where a network user can cause detection of error conditions without action, which may lead to limited code execution, some denial of service, escalation of privileges, and limited impacts to both data confidentiality and integrity.
NVIDIA Windows GPU Display Driver contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape where a value passed from a user to the driver is not correctly validated and used as the index to an array which may lead to denial of service or possible escalation of privileges.
NVIDIA Windows GPU Display Driver contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape where a pointer passed from a user to the driver is used without validation which may lead to denial of service or possible escalation of privileges.
NVIDIA Windows GPU Display Driver contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape where a value passed from a user to the driver is not correctly validated and used as the index to an array which may lead to denial of service or possible escalation of privileges.
NVIDIA GPU Display Driver contains a vulnerability in the kernel mode layer handler where a value passed from a user to the driver is not correctly validated and used as the index to an array which may lead to a denial of service or possible escalation of privileges.
Heap-based buffer overflow in dnsmasq before 2.78 allows remote attackers to cause a denial of service (crash) or execute arbitrary code via a crafted DNS response.
NVIDIA Windows GPU Display Driver contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape where an improper input parameter handling may lead to a denial of service or potential escalation of privileges.
A heap buffer overflow was discovered in the device control ioctl in the Linux driver for Nvidia graphics cards, which may allow an attacker to overflow 49 bytes. This issue was fixed in version 295.53.
The NVIDIA Stereoscopic 3D driver before 7.17.12.7565 does not properly handle commands sent to a named pipe, which allows local users to gain privileges via a crafted application.
The native Bluetooth stack in the Linux Kernel (BlueZ), starting at the Linux kernel version 2.6.32 and up to and including 4.13.1, are vulnerable to a stack overflow vulnerability in the processing of L2CAP configuration responses resulting in Remote code execution in kernel space.
NVIDIA DGX H100 BMC contains a vulnerability in the REST service where an attacker may cause improper input validation. A successful exploit of this vulnerability may lead to escalation of privileges and information disclosure.
NVIDIA DGX A100 BMC contains a vulnerability in the host KVM daemon, where an unauthenticated attacker may cause a stack overflow by sending a specially crafted network packet. A successful exploit of this vulnerability may lead to arbitrary code execution, denial of service, information disclosure, and data tampering.
NVIDIA DGX H100 BMC contains a vulnerability in the REST service, where an attacker may cause improper input validation. A successful exploit of this vulnerability may lead to escalation of privileges and information disclosure.
NVIDIA DGX H100 BMC contains a vulnerability in the REST service where an attacker may cause improper input validation. A successful exploit of this vulnerability may lead to escalation of privileges and information disclosure.
NVIDIA DGX H100 BMC contains a vulnerability in IPMI, where an attacker may cause improper input validation. A successful exploit of this vulnerability may lead to code execution, denial of services, escalation of privileges, and information disclosure.
NVIDIA nvJPEG2000 Library for Windows and Linux contains a vulnerability where improper input validation might enable an attacker to use a specially crafted input file. A successful exploit of this vulnerability might lead to a partial denial of service.
NVIDIA DGX A100 BMC contains a vulnerability in the host KVM daemon, where an unauthenticated attacker may cause stack memory corruption by sending a specially crafted network packet. A successful exploit of this vulnerability may lead to arbitrary code execution, denial of service, information disclosure, and data tampering.
NVIDIA DGX A100 SBIOS contains a vulnerability where a user may cause a heap-based buffer overflow by local access. A successful exploit of this vulnerability may lead to code execution, denial of service, information disclosure, and data tampering.
NVIDIA DGX H100 BMC contains a vulnerability in the REST service, where an attacker may cause improper input validation. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, and information disclosure.
NVIDIA DGX A100 baseboard management controller (BMC) contains a vulnerability in the host KVM daemon, where an unauthenticated attacker may cause a stack overflow by sending a specially crafted network packet. A successful exploit of this vulnerability may lead to arbitrary code execution, denial of service, information disclosure, and data tampering.
NVIDIA DGX H100 BMC contains a vulnerability in IPMI, where an attacker may cause improper input validation. A successful exploit of this vulnerability may lead to escalation of privileges, information disclosure, and denial of service.
NVIDIA DGX A100 SBIOS contains a vulnerability where an attacker may cause an SMI callout vulnerability that could be used to execute arbitrary code at the SMM level. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, and information disclosure.
NVIDIA DGX H100 BMC contains a vulnerability in the web UI, where an attacker may cause improper input validation. A successful exploit of this vulnerability may lead to information disclosure, code execution, and escalation of privileges.
NVIDIA DGX A100/A800 contains a vulnerability in SBIOS where an attacker may cause improper input validation by providing configuration information in an unexpected format. A successful exploit of this vulnerability may lead to denial of service, information disclosure, and data tampering.
NVIDIA DGX H100 baseboard management controller (BMC) contains a vulnerability in a web server plugin, where an unauthenticated attacker may cause a stack overflow by sending a specially crafted network packet. A successful exploit of this vulnerability may lead to arbitrary code execution, denial of service, information disclosure, and data tampering.
NVIDIA DGX H100 BMC contains a vulnerability in the KVM service, where an attacker may cause improper input validation. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, and information disclosure.
NVIDIA Jetson Linux Driver Package contains a vulnerability in nvbootctrl, where a privileged local attacker can configure invalid settings, resulting in denial of service.
NVIDIA DGX-1 contains a vulnerability in Ofbd in AMI SBIOS, where a preconditioned heap can allow a user with elevated privileges to cause an access beyond the end of a buffer, which may lead to code execution, escalation of privileges, denial of service and information disclosure. The scope of the impact of this vulnerability can extend to other components.
NVIDIA DGX H100 BMC contains a vulnerability in IPMI, where an attacker may cause improper input validation. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
All versions of the NVIDIA Windows GPU Display Driver contain a vulnerability in the kernel mode layer handler for DxgkDdiEscape where a call to certain function requiring lower IRQL can be made under raised IRQL which may lead to a denial of service.
All versions of NVIDIA Windows GPU Display Driver contain a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscapeID 0x100008b where user provided input is used as the limit for a loop may lead to denial of service or potential escalation of privileges
All versions of the NVIDIA GPU Display Driver contain a vulnerability in the kernel mode layer handler where a value passed from a user to the driver is not correctly validated and used in an offset calculation may lead to denial of service or potential escalation of privileges.
All versions of NVIDIA Linux GPU Display Driver contain a vulnerability in the kernel mode layer handler where improper validation of an input parameter may cause a denial of service on the system.
All versions of the NVIDIA Windows GPU Display Driver contain a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape where the size of an input buffer is not validated, leading to denial of service or potential escalation of privileges.
All versions of the NVIDIA Windows GPU Display Driver contain a vulnerability in the kernel mode layer handler for DxgkDdiEscape where it may access paged memory while holding a spinlock, leading to a denial of service.