An issue was discovered in Ratpack before 1.7.5. Due to a misuse of the Netty library class DefaultHttpHeaders, there is no validation that headers lack HTTP control characters. Thus, if untrusted data is used to construct HTTP headers with Ratpack, HTTP Response Splitting can occur.
Jodd HTTP v6.0.9 was discovered to contain multiple CLRF injection vulnerabilities via the components jodd.http.HttpRequest#set and `jodd.http.HttpRequest#send. These vulnerabilities allow attackers to execute Server-Side Request Forgery (SSRF) via a crafted TCP payload.
Versions of Armeria 0.85.0 through and including 0.96.0 are vulnerable to HTTP response splitting, which allows remote attackers to inject arbitrary HTTP headers via CRLF sequences when unsanitized data is used to populate the headers of an HTTP response. This vulnerability has been patched in 0.97.0. Potential impacts of this vulnerability include cross-user defacement, cache poisoning, Cross-site scripting (XSS), and page hijacking.
Ruby through 2.4.7, 2.5.x through 2.5.6, and 2.6.x through 2.6.4 allows HTTP Response Splitting. If a program using WEBrick inserts untrusted input into the response header, an attacker can exploit it to insert a newline character to split a header, and inject malicious content to deceive clients. NOTE: this issue exists because of an incomplete fix for CVE-2017-17742, which addressed the CRLF vector, but did not address an isolated CR or an isolated LF.
spamdyke prior to 4.2.1: STARTTLS reveals plaintext
CoSoSys Endpoint Protector 5.1.0.2 allows Host Header Injection.
Apache OFBiz 17.12.01 is vulnerable to Host header injection by accepting arbitrary host
The SAP Gateway, versions 7.5, 7.51, 7.52 and 7.53, allows an attacker to inject content which is displayed in the form of an error message. An attacker could thus mislead a user to believe this information is from the legitimate service when it's not.
Plenti, a static site generator, has an arbitrary file write vulnerability in versions prior to 0.7.2. The `/postLocal` endpoint is vulnerable to an arbitrary file write vulnerability when a plenti user serves their website. This issue may lead to Remote Code Execution. Version 0.7.2 fixes the vulnerability.
A vulnerability, which was classified as problematic, was found in Telstra Smart Modem Gen 2 up to 20250115. This affects an unknown part of the component HTTP Header Handler. The manipulation of the argument Content-Disposition leads to injection. It is possible to initiate the attack remotely. The vendor was contacted early about this disclosure but did not respond in any way.
An injection issue was addressed with improved input validation. This issue is fixed in macOS Ventura 13.5. An app may be able to bypass certain Privacy preferences.
cPanel before 74.0.0 allows Apache HTTP Server configuration injection because of DocumentRoot variable interpolation (SEC-416).
Icinga Web 2 before 2.6.2 allows parameters that break navigation dashlets, as demonstrated by a single '$' character as the Name of a Navigation item.
RSS fields can inject new lines into the created email structure, modifying the message body. This vulnerability affects Thunderbird < 52.5.2.
The STARTTLS feature in Exim through 4.94.2 allows response injection (buffering) during MTA SMTP sending.
PECL in the download utility class in the Installer in PEAR Base System v1.10.1 does not validate file types and filenames after a redirect, which allows remote HTTP servers to overwrite files via crafted responses, as demonstrated by a .htaccess overwrite.
An LDAP injection vulnerability in /account/login in Huntflow Enterprise before 3.10.6 could allow an unauthenticated, remote user to modify the logic of an LDAP query and bypass authentication. The vulnerability is due to insufficient server-side validation of the email parameter before using it to construct LDAP queries. An attacker could bypass authentication exploiting this vulnerability by sending login attempts in which there is a valid password but a wildcard character in email parameter.
In the Zoom Client for Meetings for Ubuntu Linux before version 5.1.0, there is an HTML injection flaw when sending a remote control request to a user in the process of in-meeting screen sharing. This could allow meeting participants to be targeted for social engineering attacks.
The sitebuilder-dynamic-components plugin through 1.0 for WordPress has PHP object injection via an AJAX request.
SICK SOPAS ET before version 4.8.0 allows attackers to manipulate the command line arguments to pass in any value to the Emulator executable.
Apache Unomi prior to version 1.5.5 allows CRLF log injection because of the lack of escaping in the log statements.
Various methods in WEBrick::HTTPRequest in Ruby 1.9.2 and 1.8.7 and earlier do not validate the X-Forwarded-For, X-Forwarded-Host and X-Forwarded-Server headers in requests, which might allow remote attackers to inject arbitrary text into log files or bypass intended address parsing via a crafted header.
NIOHTTP1 and projects using it for generating HTTP responses can be subject to a HTTP Response Injection attack. This occurs when a HTTP/1.1 server accepts user generated input from an incoming request and reflects it into a HTTP/1.1 response header in some form. A malicious user can add newlines to their input (usually in encoded form) and "inject" those newlines into the returned HTTP response. This capability allows users to work around security headers and HTTP/1.1 framing headers by injecting entirely false responses or other new headers. The injected false responses may also be treated as the response to subsequent requests, which can lead to XSS, cache poisoning, and a number of other flaws. This issue was resolved by adding validation to the HTTPHeaders type, ensuring that there's no whitespace incorrectly present in the HTTP headers provided by users. As the existing API surface is non-failable, all invalid characters are replaced by linear whitespace.
Plenti, a static site generator, has an arbitrary file deletion vulnerability in versions prior to 0.7.2. The `/postLocal` endpoint is vulnerable to an arbitrary file write deletion when a plenti user serves their website. This issue may lead to information loss. Version 0.7.2 fixes the vulnerability.
In Secure Headers (RubyGem secure_headers), a directive injection vulnerability is present in versions before 3.8.0, 5.1.0, and 6.2.0. If user-supplied input was passed into append/override_content_security_policy_directives, a semicolon could be injected leading to directive injection. This could be used to e.g. override a script-src directive. Duplicate directives are ignored and the first one wins. The directives in secure_headers are sorted alphabetically so they pretty much all come before script-src. A previously undefined directive would receive a value even if SecureHeaders::OPT_OUT was supplied. The fixed versions will silently convert the semicolons to spaces and emit a deprecation warning when this happens. This will result in innocuous browser console messages if being exploited/accidentally used. In future releases, we will raise application errors resulting in 500s. Depending on what major version you are using, the fixed versions are 6.2.0, 5.1.0, 3.8.0.