Cisco Sourcefire Snort 3.0 before build 233 has a Buffer Overread related to use of a decoder array. The size was off by one making it possible to read past the end of the array with an ether type of 0xFFFF. Increasing the array size solves this problem.
The Binary File Descriptor (BFD) library (aka libbfd), as distributed in GNU Binutils 2.28, is vulnerable to an invalid read (of size 8) because of missing a check (in the copy_special_section_fields function) for an invalid sh_link field before attempting to follow it. This vulnerability causes Binutils utilities like strip to crash.
The Binary File Descriptor (BFD) library (aka libbfd), as distributed in GNU Binutils 2.28, has an aout_link_add_symbols function in bfd/aoutx.h that is vulnerable to a heap-based buffer over-read (off-by-one) because of an incomplete check for invalid string offsets while loading symbols, leading to a GNU linker (ld) program crash.
In MongoDB libbson 1.7.0, the bson_iter_codewscope function in bson-iter.c miscalculates a bson_utf8_validate length argument, which allows remote attackers to cause a denial of service (heap-based buffer over-read in the bson_utf8_validate function in bson-utf8.c), as demonstrated by bson-to-json.c.
There is an illegal address access in Sass::Eval::operator() in eval.cpp of LibSass 3.4.5, leading to a remote denial of service attack. NOTE: this is similar to CVE-2017-11555 but remains exploitable after the vendor's CVE-2017-11555 fix (available from GitHub after 2017-07-24).
Bento4 v1.6.0-639 was discovered to contain a segmentation violation via the AP4_TrunAtom::SetDataOffset(int) function in Ap4TrunAtom.h.
Potrace 1.14 has a heap-based buffer over-read in the interpolate_cubic function in mkbitmap.c.
An out-of-bounds read flaw related to the assess_packet function in eapmd5pass.c:134 was found in the way eapmd5pass 1.4 handled processing of network packets. A remote attacker could potentially use this flaw to crash the eapmd5pass process under certain circumstances by generating specially crafted network traffic.
The _WM_SetupMidiEvent function in internal_midi.c:2318 in WildMIDI 0.4.2 can cause a denial of service (invalid memory read and application crash) via a crafted mid file.
Irssi before 0.8.21 allows remote attackers to cause a denial of service (out-of-bounds read and crash) via a string containing a formatting sequence (%[) without a closing bracket (]).
The _WM_ParseNewMidi function in f_midi.c in WildMIDI 0.4.2 can cause a denial of service (invalid memory read and application crash) via a crafted mid file.
The gf_bs_write_data function in GPAC 1.0.1 allows attackers to cause a denial of service via a crafted file in the MP4Box command.
An FR-GV-304 issue in FreeRADIUS 3.x before 3.0.15 allows "DHCP - Buffer over-read in fr_dhcp_decode_suboptions()" and a denial of service.
A stack-based buffer under-read in htmldoc before 1.9.12, allows attackers to cause a denial of service via a crafted BMP image to image_load_bmp.
There's a flaw in OpenEXR's rleUncompress functionality in versions prior to 3.0.5. An attacker who is able to submit a crafted file to an application linked with OpenEXR could cause an out-of-bounds read. The greatest risk from this flaw is to application availability.
tcpdump 4.9.0 allows remote attackers to cause a denial of service (heap-based buffer over-read and application crash) via crafted packet data. The crash occurs in the EXTRACT_16BITS function, called from the stp_print function for the Spanning Tree Protocol.
The shoco_decompress function in the API in shoco through 2017-07-17 allows remote attackers to cause a denial of service (buffer over-read and application crash) via malformed compressed data.
There is a heap based buffer over-read in lexer.hpp of LibSass 3.4.5. A crafted input will lead to a remote denial of service attack.
In LibSass 3.4.5, there is a heap-based buffer over-read in the function json_mkstream() in sass_context.cpp. A crafted input will lead to a remote denial of service attack.
Adobe Digital Editions versions 4.5.3 and earlier have an exploitable buffer over-read vulnerability. Successful exploitation could lead to information disclosure.
An exploitable denial-of-service vulnerability exists in the traversal of lists functionality of Natus Xltek NeuroWorks 8. A specially crafted network packet can cause an out-of-bounds read, resulting in a denial of service. An attacker can send a malicious packet to trigger this vulnerability.
An issue was discovered in OpenEXR before 2.4.1. There is an out-of-bounds read during RLE uncompression in rleUncompress in ImfRle.cpp.
When SWFTools 0.9.2 processes a crafted file in ttftool, it can lead to a heap-based buffer over-read in the readBlock() function in lib/ttf.c.
Adobe Digital Editions versions 4.5.3 and earlier have an exploitable buffer over-read vulnerability. Successful exploitation could lead to information disclosure.
Bento4 v1.6.0-639 was discovered to contain a segmentation violation via the AP4_Processor::ProcessFragments function in mp4encrypt.
Stack-based buffer over-read in function disasm in nasm 2.16 allows attackers to cause a denial of service.
Stack-based buffer over-read in disasm in nasm 2.16 allows attackers to cause a denial of service (crash).
A heap-based buffer overflow issue was found in ImageMagick's PushCharPixel() function in quantum-private.h. This issue may allow a local attacker to trick the user into opening a specially crafted file, triggering an out-of-bounds read error and allowing an application to crash, resulting in a denial of service.
An out-of-bounds read flaw was found in w3m, in the Strnew_size function in Str.c. This issue may allow an attacker to cause a denial of service through a crafted HTML file.
IPv6 function in Huawei Quidway S2700 V200R003C00SPC300, Quidway S5300 V200R003C00SPC300, Quidway S5700 V200R003C00SPC300, S2300 V200R003C00, V200R003C00SPC300T, V200R005C00, V200R006C00, V200R007C00, V200R008C00, V200R009C00, S2700 V200R005C00, V200R006C00, V200R007C00, V200R008C00, V200R009C00, S5300 V200R003C00, V200R003C00SPC300T, V200R003C00SPC600, V200R003C02, V200R005C00, V200R005C01, V200R005C02, V200R005C03, V200R005C05, V200R006C00, V200R007C00, V200R008C00, V200R009C00, S5700 V200R003C00, V200R003C00SPC316T, V200R003C00SPC600, V200R003C02, V200R005C00, V200R005C01, V200R005C02, V200R005C03, V200R006C00, V200R007C00, V200R008C00, V200R009C00, S600-E V200R008C00, V200R009C00, S6300 V200R003C00, V200R005C00, V200R007C00, V200R008C00, V200R009C00, S6700 V200R003C00, V200R005C00, V200R005C01, V200R005C02, V200R007C00, V200R008C00, V200R009C00 has an out-of-bounds read vulnerability. An unauthenticated attacker may send crafted malformed IPv6 packets to the affected products. Due to insufficient verification of the packets, successful exploit will cause device to reset.
An out-of-bounds read flaw was found in w3m, in the growbuf_to_Str function in indep.c. This issue may allow an attacker to cause a denial of service through a crafted HTML file.
Huawei AR120-S V200R005C32, V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR1200 V200R005C32, V200R006C10, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR1200-S V200R005C32, V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR150 V200R005C32, V200R006C10, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR150-S V200R005C32, V200R007C00, V200R008C20, V200R008C30, AR160 V200R005C32, V200R006C10, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR200 V200R005C32, V200R006C10, V200R007C00, V200R007C01, V200R008C20, V200R008C30, AR200-S V200R005C32, V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR2200 V200R006C10, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR2200-S V200R005C32, V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR3200 V200R005C32, V200R006C10, V200R006C11, V200R007C00, V200R007C01, V200R007C02, V200R008C00, V200R008C10, V200R008C20, V200R008C30, AR3600 V200R006C10, V200R007C00, V200R007C01, V200R008C20, AR510 V200R005C32, V200R006C10, V200R007C00, V200R008C20, V200R008C30, NetEngine16EX V200R005C32, V200R006C10, V200R007C00, V200R008C20, V200R008C30, SRG1300 V200R005C32, V200R006C10, V200R007C00, V200R007C02, V200R008C20, V200R008C30, SRG2300 V200R005C32, V200R006C10, V200R007C00, V200R007C02, V200R008C20, V200R008C30, SRG3300 V200R005C32, V200R006C10, V200R007C00, V200R008C20, V200R008C30 have an out-of-bounds read vulnerability due to insufficient input validation. An unauthenticated, remote attacker could exploit this vulnerability by sending malformed Session Initiation Protocol(SIP) packets to the target device. Successful exploit could make the device read out of bounds and thus cause a service to be unavailable.
iSCSI dissector crash in Wireshark 4.0.0 to 4.0.6 allows denial of service via packet injection or crafted capture file
Windows Kernel Denial of Service Vulnerability
Exiv2 is a command-line utility and C++ library for reading, writing, deleting, and modifying the metadata of image files. An out-of-bounds read was found in Exiv2 versions v0.27.4 and earlier. The out-of-bounds read is triggered when Exiv2 is used to print the metadata of a crafted image file. An attacker could potentially exploit the vulnerability to cause a denial of service, if they can trick the victim into running Exiv2 on a crafted image file. Note that this bug is only triggered when printing the image ICC profile, which is a less frequently used Exiv2 operation that requires an extra command line option (`-p C`). The bug is fixed in version v0.27.5.
Exiv2 is a command-line utility and C++ library for reading, writing, deleting, and modifying the metadata of image files. An out-of-bounds read was found in Exiv2 versions v0.27.4 and earlier. The out-of-bounds read is triggered when Exiv2 is used to read the metadata of a crafted image file. An attacker could potentially exploit the vulnerability to cause a denial of service, if they can trick the victim into running Exiv2 on a crafted image file. The bug is fixed in version v0.27.5.
RP200 V500R002C00, V600R006C00; TE30 V100R001C10, V500R002C00, V600R006C00; TE40 V500R002C00, V600R006C00; TE50 V500R002C00, V600R006C00; TE60 V100R001C10, V500R002C00, V600R006C00 have an out-of-bounds read vulnerabilities in some Huawei products. Due to insufficient input validation, a remote attacker could exploit these vulnerabilities by sending specially crafted SS7 related packets to the target devices. Successful exploit will cause out-of-bounds read and possibly crash the system.
AR120-S V200R006C10, V200R007C00, V200R008C20, V200R008C30; AR1200 V200R006C10, V200R006C13, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30; AR1200-S V200R006C10, V200R007C00, V200R008C20, V200R008C30; AR150 V200R006C10, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30; AR150-S V200R006C10, V200R007C00, V200R008C20, V200R008C30; AR160 V200R006C10, V200R006C12, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30; AR200 V200R006C10, V200R007C00, V200R007C01, V200R008C20, V200R008C30; AR200-S V200R006C10, V200R007C00, V200R008C20, V200R008C30; AR2200 V200R006C10, V200R006C13, V200R006C16, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30; AR2200-S V200R006C10, V200R007C00, V200R008C20, V200R008C30; AR3200 V200R006C10, V200R006C11, V200R007C00, V200R007C01, V200R007C02, V200R008C00, V200R008C10, V200R008C20, V200R008C30; AR510 V200R006C10, V200R006C12, V200R006C13, V200R006C15, V200R006C16, V200R006C17, V200R007C00, V200R008C20, V200R008C30; SRG1300 V200R006C10, V200R007C00, V200R007C02, V200R008C20, V200R008C30; SRG2300 V200R006C10, V200R007C00, V200R007C02, V200R008C20, V200R008C30; SRG3300 V200R006C10, V200R007C00, V200R008C20, V200R008C30 have an input validation vulnerability in Huawei multiple products. Due to the insufficient input validation, an unauthenticated, remote attacker may craft a malformed Stream Control Transmission Protocol (SCTP) packet and send it to the device, causing the device to read out of bounds and restart.
llvm-project commit a0138390 was discovered to contain a segmentation fault via the component mlir::spirv::TargetEnv::TargetEnv(mlir::spirv::TargetEnvAttr).
llvm-project commit a0138390 was discovered to contain a segmentation fault via the component matchAndRewriteSortOp<mlir::sparse_tensor::SortOp>(mlir::sparse_tensor::SortOp.
In Wireshark 2.4.0, 2.2.0 to 2.2.8, and 2.0.0 to 2.0.14, the IrCOMM dissector has a buffer over-read and application crash. This was addressed in plugins/irda/packet-ircomm.c by adding length validation.
In The Sleuth Kit (TSK) 4.4.2, opening a crafted ISO 9660 image triggers an out-of-bounds read in iso9660_proc_dir() in tsk/fs/iso9660_dent.c in libtskfs.a, as demonstrated by fls.
There is an illegal address access in the function output_hex() in data/data-out.c of the libpspp library in GNU PSPP before 1.0.1 that will lead to remote denial of service.
An issue has been found in libde265 v1.0.8 due to incorrect access control. A SEGV caused by a READ memory access in function derive_boundaryStrength of deblock.cc has occurred. The vulnerability causes a segmentation fault and application crash, which leads to remote denial of service.
llvm-project commit a0138390 was discovered to contain a segmentation fault via the component mlir::Type::isa<mlir::LLVM::LLVMVoidType.
In the FrameSequence_gif::FrameSequence_gif function of libframesequence, there is a out of bounds read due to a missing bounds check. This could lead to a remote denial of service with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: 6.0, 6.0.1, 7.0, 7.1.1, 7.1.2, 8.0, 8.1. Android ID: A-71361451.
A length validation (leading to out-of-bounds read and write) flaw was found in the way eapmd5pass 1.4 handled network traffic in the extract_eapusername function. A remote attacker could potentially use this flaw to crash the eapmd5pass process by generating specially crafted network traffic.
fig2dev 3.2.7b contains a segmentation fault in the gencgm_start function in gencgm.c.
An issue was discovered in OpenEXR before 2.4.1. There is an out-of-bounds read in ImfOptimizedPixelReading.h.
It was discovered the fix for CVE-2018-19758 (libsndfile) was not complete and still allows a read beyond the limits of a buffer in wav_write_header() function in wav.c. A local attacker may use this flaw to make the application crash.