In the Linux kernel, the following vulnerability has been resolved: hwmon: (nct6775) Fix crash in clear_caseopen Paweł Marciniak reports the following crash, observed when clearing the chassis intrusion alarm. BUG: kernel NULL pointer dereference, address: 0000000000000028 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 3 PID: 4815 Comm: bash Tainted: G S 5.16.2-200.fc35.x86_64 #1 Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./Z97 Extreme4, BIOS P2.60A 05/03/2018 RIP: 0010:clear_caseopen+0x5a/0x120 [nct6775] Code: 68 70 e8 e9 32 b1 e3 85 c0 0f 85 d2 00 00 00 48 83 7c 24 ... RSP: 0018:ffffabcb02803dd8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000 RDX: ffff8e8808192880 RSI: 0000000000000000 RDI: ffff8e87c7509a68 RBP: 0000000000000000 R08: 0000000000000001 R09: 000000000000000a R10: 000000000000000a R11: f000000000000000 R12: 000000000000001f R13: ffff8e87c7509828 R14: ffff8e87c7509a68 R15: ffff8e88494527a0 FS: 00007f4db9151740(0000) GS:ffff8e8ebfec0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000028 CR3: 0000000166b66001 CR4: 00000000001706e0 Call Trace: <TASK> kernfs_fop_write_iter+0x11c/0x1b0 new_sync_write+0x10b/0x180 vfs_write+0x209/0x2a0 ksys_write+0x4f/0xc0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae The problem is that the device passed to clear_caseopen() is the hwmon device, not the platform device, and the platform data is not set in the hwmon device. Store the pointer to sio_data in struct nct6775_data and get if from there if needed.
In the Linux kernel, the following vulnerability has been resolved: af_unix: Update unix_sk(sk)->oob_skb under sk_receive_queue lock. Billy Jheng Bing-Jhong reported a race between __unix_gc() and queue_oob(). __unix_gc() tries to garbage-collect close()d inflight sockets, and then if the socket has MSG_OOB in unix_sk(sk)->oob_skb, GC will drop the reference and set NULL to it locklessly. However, the peer socket still can send MSG_OOB message and queue_oob() can update unix_sk(sk)->oob_skb concurrently, leading NULL pointer dereference. [0] To fix the issue, let's update unix_sk(sk)->oob_skb under the sk_receive_queue's lock and take it everywhere we touch oob_skb. Note that we defer kfree_skb() in manage_oob() to silence lockdep false-positive (See [1]). [0]: BUG: kernel NULL pointer dereference, address: 0000000000000008 PF: supervisor write access in kernel mode PF: error_code(0x0002) - not-present page PGD 8000000009f5e067 P4D 8000000009f5e067 PUD 9f5d067 PMD 0 Oops: 0002 [#1] PREEMPT SMP PTI CPU: 3 PID: 50 Comm: kworker/3:1 Not tainted 6.9.0-rc5-00191-gd091e579b864 #110 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Workqueue: events delayed_fput RIP: 0010:skb_dequeue (./include/linux/skbuff.h:2386 ./include/linux/skbuff.h:2402 net/core/skbuff.c:3847) Code: 39 e3 74 3e 8b 43 10 48 89 ef 83 e8 01 89 43 10 49 8b 44 24 08 49 c7 44 24 08 00 00 00 00 49 8b 14 24 49 c7 04 24 00 00 00 00 <48> 89 42 08 48 89 10 e8 e7 c5 42 00 4c 89 e0 5b 5d 41 5c c3 cc cc RSP: 0018:ffffc900001bfd48 EFLAGS: 00000002 RAX: 0000000000000000 RBX: ffff8880088f5ae8 RCX: 00000000361289f9 RDX: 0000000000000000 RSI: 0000000000000206 RDI: ffff8880088f5b00 RBP: ffff8880088f5b00 R08: 0000000000080000 R09: 0000000000000001 R10: 0000000000000003 R11: 0000000000000001 R12: ffff8880056b6a00 R13: ffff8880088f5280 R14: 0000000000000001 R15: ffff8880088f5a80 FS: 0000000000000000(0000) GS:ffff88807dd80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 0000000006314000 CR4: 00000000007506f0 PKRU: 55555554 Call Trace: <TASK> unix_release_sock (net/unix/af_unix.c:654) unix_release (net/unix/af_unix.c:1050) __sock_release (net/socket.c:660) sock_close (net/socket.c:1423) __fput (fs/file_table.c:423) delayed_fput (fs/file_table.c:444 (discriminator 3)) process_one_work (kernel/workqueue.c:3259) worker_thread (kernel/workqueue.c:3329 kernel/workqueue.c:3416) kthread (kernel/kthread.c:388) ret_from_fork (arch/x86/kernel/process.c:153) ret_from_fork_asm (arch/x86/entry/entry_64.S:257) </TASK> Modules linked in: CR2: 0000000000000008
kvm_pv_send_ipi in arch/x86/kvm/lapic.c in the Linux kernel through 4.19.2 allows local users to cause a denial of service (NULL pointer dereference and BUG) via crafted system calls that reach a situation where the apic map is uninitialized.
The unimac_mdio_probe function in drivers/net/phy/mdio-bcm-unimac.c in the Linux kernel through 4.15.8 does not validate certain resource availability, which allows local users to cause a denial of service (NULL pointer dereference).
The treo_attach function in drivers/usb/serial/visor.c in the Linux kernel before 4.5 allows physically proximate attackers to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact by inserting a USB device that lacks a (1) bulk-in or (2) interrupt-in endpoint.
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix command stats access after free Command may fail while driver is reloading and can't accept FW commands till command interface is reinitialized. Such command failure is being logged to command stats. This results in NULL pointer access as command stats structure is being freed and reallocated during mlx5 devlink reload (see kernel log below). Fix it by making command stats statically allocated on driver probe. Kernel log: [ 2394.808802] BUG: unable to handle kernel paging request at 000000000002a9c0 [ 2394.810610] PGD 0 P4D 0 [ 2394.811811] Oops: 0002 [#1] SMP NOPTI ... [ 2394.815482] RIP: 0010:native_queued_spin_lock_slowpath+0x183/0x1d0 ... [ 2394.829505] Call Trace: [ 2394.830667] _raw_spin_lock_irq+0x23/0x26 [ 2394.831858] cmd_status_err+0x55/0x110 [mlx5_core] [ 2394.833020] mlx5_access_reg+0xe7/0x150 [mlx5_core] [ 2394.834175] mlx5_query_port_ptys+0x78/0xa0 [mlx5_core] [ 2394.835337] mlx5e_ethtool_get_link_ksettings+0x74/0x590 [mlx5_core] [ 2394.836454] ? kmem_cache_alloc_trace+0x140/0x1c0 [ 2394.837562] __rh_call_get_link_ksettings+0x33/0x100 [ 2394.838663] ? __rtnl_unlock+0x25/0x50 [ 2394.839755] __ethtool_get_link_ksettings+0x72/0x150 [ 2394.840862] duplex_show+0x6e/0xc0 [ 2394.841963] dev_attr_show+0x1c/0x40 [ 2394.843048] sysfs_kf_seq_show+0x9b/0x100 [ 2394.844123] seq_read+0x153/0x410 [ 2394.845187] vfs_read+0x91/0x140 [ 2394.846226] ksys_read+0x4f/0xb0 [ 2394.847234] do_syscall_64+0x5b/0x1a0 [ 2394.848228] entry_SYSCALL_64_after_hwframe+0x65/0xca
In the Linux kernel, the following vulnerability has been resolved: remoteproc: core: Clear table_sz when rproc_shutdown There is case as below could trigger kernel dump: Use U-Boot to start remote processor(rproc) with resource table published to a fixed address by rproc. After Kernel boots up, stop the rproc, load a new firmware which doesn't have resource table ,and start rproc. When starting rproc with a firmware not have resource table, `memcpy(loaded_table, rproc->cached_table, rproc->table_sz)` will trigger dump, because rproc->cache_table is set to NULL during the last stop operation, but rproc->table_sz is still valid. This issue is found on i.MX8MP and i.MX9. Dump as below: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=000000010af63000 [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP Modules linked in: CPU: 2 UID: 0 PID: 1060 Comm: sh Not tainted 6.14.0-rc7-next-20250317-dirty #38 Hardware name: NXP i.MX8MPlus EVK board (DT) pstate: a0000005 (NzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __pi_memcpy_generic+0x110/0x22c lr : rproc_start+0x88/0x1e0 Call trace: __pi_memcpy_generic+0x110/0x22c (P) rproc_boot+0x198/0x57c state_store+0x40/0x104 dev_attr_store+0x18/0x2c sysfs_kf_write+0x7c/0x94 kernfs_fop_write_iter+0x120/0x1cc vfs_write+0x240/0x378 ksys_write+0x70/0x108 __arm64_sys_write+0x1c/0x28 invoke_syscall+0x48/0x10c el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x30/0xcc el0t_64_sync_handler+0x10c/0x138 el0t_64_sync+0x198/0x19c Clear rproc->table_sz to address the issue.
crypto/mcryptd.c in the Linux kernel before 4.8.15 allows local users to cause a denial of service (NULL pointer dereference and system crash) by using an AF_ALG socket with an incompatible algorithm, as demonstrated by mcryptd(md5).
The vcpu_scan_ioapic function in arch/x86/kvm/x86.c in the Linux kernel through 4.19.2 allows local users to cause a denial of service (NULL pointer dereference and BUG) via crafted system calls that reach a situation where ioapic is uninitialized.
The rfcomm_sock_bind function in net/bluetooth/rfcomm/sock.c in the Linux kernel before 4.2 allows local users to obtain sensitive information or cause a denial of service (NULL pointer dereference) via vectors involving a bind system call on a Bluetooth RFCOMM socket.
The PCI backend driver in Xen, when running on an x86 system and using Linux 3.1.x through 4.3.x as the driver domain, allows local guest administrators to hit BUG conditions and cause a denial of service (NULL pointer dereference and host OS crash) by leveraging a system with access to a passed-through MSI or MSI-X capable physical PCI device and a crafted sequence of XEN_PCI_OP_* operations, aka "Linux pciback missing sanity checks."
An issue was discovered in the Linux kernel through 4.17.10. There is a NULL pointer dereference in fscrypt_do_page_crypto() in fs/crypto/crypto.c when operating on a file in a corrupted f2fs image.
The Linux kernel before 2.6.25.10 does not properly perform tty operations, which allows local users to cause a denial of service (system crash) or possibly gain privileges via vectors involving NULL pointer dereference of function pointers in (1) hamradio/6pack.c, (2) hamradio/mkiss.c, (3) irda/irtty-sir.c, (4) ppp_async.c, (5) ppp_synctty.c, (6) slip.c, (7) wan/x25_asy.c, and (8) wireless/strip.c in drivers/net/.
An issue was discovered in the Linux kernel through 4.17.10. There is an invalid pointer dereference in io_ctl_map_page() when mounting and operating a crafted btrfs image, because of a lack of block group item validation in check_leaf_item in fs/btrfs/tree-checker.c.
The nf_nat_redirect_ipv4 function in net/netfilter/nf_nat_redirect.c in the Linux kernel before 4.4 allows remote attackers to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact by sending certain IPv4 packets to an incompletely configured interface, a related issue to CVE-2003-1604.
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix null-ptr-deref in block_dirty_buffer tracepoint When using the "block:block_dirty_buffer" tracepoint, mark_buffer_dirty() may cause a NULL pointer dereference, or a general protection fault when KASAN is enabled. This happens because, since the tracepoint was added in mark_buffer_dirty(), it references the dev_t member bh->b_bdev->bd_dev regardless of whether the buffer head has a pointer to a block_device structure. In the current implementation, nilfs_grab_buffer(), which grabs a buffer to read (or create) a block of metadata, including b-tree node blocks, does not set the block device, but instead does so only if the buffer is not in the "uptodate" state for each of its caller block reading functions. However, if the uptodate flag is set on a folio/page, and the buffer heads are detached from it by try_to_free_buffers(), and new buffer heads are then attached by create_empty_buffers(), the uptodate flag may be restored to each buffer without the block device being set to bh->b_bdev, and mark_buffer_dirty() may be called later in that state, resulting in the bug mentioned above. Fix this issue by making nilfs_grab_buffer() always set the block device of the super block structure to the buffer head, regardless of the state of the buffer's uptodate flag.
Adobe Flash Player version 32.0.0.433 (and earlier) are affected by an exploitable NULL pointer dereference vulnerability that could result in a crash and arbitrary code execution. Exploitation of this issue requires an attacker to insert malicious strings in an HTTP response that is by default delivered over TLS/SSL.
In the Linux kernel, the following vulnerability has been resolved: drm/virtio: Ensure that objs is not NULL in virtio_gpu_array_put_free() If virtio_gpu_object_shmem_init() fails (e.g. due to fault injection, as it happened in the bug report by syzbot), virtio_gpu_array_put_free() could be called with objs equal to NULL. Ensure that objs is not NULL in virtio_gpu_array_put_free(), or otherwise return from the function.
In the Linux kernel, the following vulnerability has been resolved: i40e: Fix NULL ptr dereference on VSI filter sync Remove the reason of null pointer dereference in sync VSI filters. Added new I40E_VSI_RELEASING flag to signalize deleting and releasing of VSI resources to sync this thread with sync filters subtask. Without this patch it is possible to start update the VSI filter list after VSI is removed, that's causing a kernel oops.
A null pointer dereference flaw was found in the hugetlbfs_fill_super function in the Linux kernel hugetlbfs (HugeTLB pages) functionality. This issue may allow a local user to crash the system or potentially escalate their privileges on the system.
The aiptek_probe function in drivers/input/tablet/aiptek.c in the Linux kernel before 4.4 allows physically proximate attackers to cause a denial of service (NULL pointer dereference and system crash) via a crafted USB device that lacks endpoints.
In the Linux kernel, the following vulnerability has been resolved: drivers: perf: ctr_get_width function for legacy is not defined With parameters CONFIG_RISCV_PMU_LEGACY=y and CONFIG_RISCV_PMU_SBI=n linux kernel crashes when you try perf record: $ perf record ls [ 46.749286] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 46.750199] Oops [#1] [ 46.750342] Modules linked in: [ 46.750608] CPU: 0 PID: 107 Comm: perf-exec Not tainted 6.6.0 #2 [ 46.750906] Hardware name: riscv-virtio,qemu (DT) [ 46.751184] epc : 0x0 [ 46.751430] ra : arch_perf_update_userpage+0x54/0x13e [ 46.751680] epc : 0000000000000000 ra : ffffffff8072ee52 sp : ff2000000022b8f0 [ 46.751958] gp : ffffffff81505988 tp : ff6000000290d400 t0 : ff2000000022b9c0 [ 46.752229] t1 : 0000000000000001 t2 : 0000000000000003 s0 : ff2000000022b930 [ 46.752451] s1 : ff600000028fb000 a0 : 0000000000000000 a1 : ff600000028fb000 [ 46.752673] a2 : 0000000ae2751268 a3 : 00000000004fb708 a4 : 0000000000000004 [ 46.752895] a5 : 0000000000000000 a6 : 000000000017ffe3 a7 : 00000000000000d2 [ 46.753117] s2 : ff600000028fb000 s3 : 0000000ae2751268 s4 : 0000000000000000 [ 46.753338] s5 : ffffffff8153e290 s6 : ff600000863b9000 s7 : ff60000002961078 [ 46.753562] s8 : ff60000002961048 s9 : ff60000002961058 s10: 0000000000000001 [ 46.753783] s11: 0000000000000018 t3 : ffffffffffffffff t4 : ffffffffffffffff [ 46.754005] t5 : ff6000000292270c t6 : ff2000000022bb30 [ 46.754179] status: 0000000200000100 badaddr: 0000000000000000 cause: 000000000000000c [ 46.754653] Code: Unable to access instruction at 0xffffffffffffffec. [ 46.754939] ---[ end trace 0000000000000000 ]--- [ 46.755131] note: perf-exec[107] exited with irqs disabled [ 46.755546] note: perf-exec[107] exited with preempt_count 4 This happens because in the legacy case the ctr_get_width function was not defined, but it is used in arch_perf_update_userpage. Also remove extra check in riscv_pmu_ctr_get_width_mask
A race condition in the Linux kernel before 5.5.7 involving VT_RESIZEX could lead to a NULL pointer dereference and general protection fault.
In the Linux kernel, the following vulnerability has been resolved: can: dev: can_get_echo_skb(): prevent call to kfree_skb() in hard IRQ context If a driver calls can_get_echo_skb() during a hardware IRQ (which is often, but not always, the case), the 'WARN_ON(in_irq)' in net/core/skbuff.c#skb_release_head_state() might be triggered, under network congestion circumstances, together with the potential risk of a NULL pointer dereference. The root cause of this issue is the call to kfree_skb() instead of dev_kfree_skb_irq() in net/core/dev.c#enqueue_to_backlog(). This patch prevents the skb to be freed within the call to netif_rx() by incrementing its reference count with skb_get(). The skb is finally freed by one of the in-irq-context safe functions: dev_consume_skb_any() or dev_kfree_skb_any(). The "any" version is used because some drivers might call can_get_echo_skb() in a normal context. The reason for this issue to occur is that initially, in the core network stack, loopback skb were not supposed to be received in hardware IRQ context. The CAN stack is an exeption. This bug was previously reported back in 2017 in [1] but the proposed patch never got accepted. While [1] directly modifies net/core/dev.c, we try to propose here a smoother modification local to CAN network stack (the assumption behind is that only CAN devices are affected by this issue). [1] http://lore.kernel.org/r/57a3ffb6-3309-3ad5-5a34-e93c3fe3614d@cetitec.com
An issue was discovered in fs/xfs/xfs_icache.c in the Linux kernel through 4.17.3. There is a NULL pointer dereference and panic in lookup_slow() on a NULL inode->i_ops pointer when doing pathwalks on a corrupted xfs image. This occurs because of a lack of proper validation that cached inodes are free during allocation.
A NULL pointer dereference flaw in Linux kernel versions prior to 5.11 may be seen if sco_sock_getsockopt function in net/bluetooth/sco.c do not have a sanity check for a socket connection, when using BT_SNDMTU/BT_RCVMTU for SCO sockets. This could allow a local attacker with a special user privilege to crash the system (DOS) or leak kernel internal information.
A flaw was found in the Linux kernel's NFS implementation, all versions 3.x and all versions 4.x up to 4.20. An attacker, who is able to mount an exported NFS filesystem, is able to trigger a null pointer dereference by using an invalid NFS sequence. This can panic the machine and deny access to the NFS server. Any outstanding disk writes to the NFS server will be lost.
An issue was discovered in fs/xfs/libxfs/xfs_attr_leaf.c in the Linux kernel through 4.17.3. An OOPS may occur for a corrupted xfs image after xfs_da_shrink_inode() is called with a NULL bp.
A flaw was found in the Linux kernel's NVMe driver. This issue may allow an unauthenticated malicious actor to send a set of crafted TCP packages when using NVMe over TCP, leading the NVMe driver to a NULL pointer dereference in the NVMe driver, causing kernel panic and a denial of service.
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921: fix kernel panic due to null pointer dereference Address a kernel panic caused by a null pointer dereference in the `mt792x_rx_get_wcid` function. The issue arises because the `deflink` structure is not properly initialized with the `sta` context. This patch ensures that the `deflink` structure is correctly linked to the `sta` context, preventing the null pointer dereference. BUG: kernel NULL pointer dereference, address: 0000000000000400 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 0 UID: 0 PID: 470 Comm: mt76-usb-rx phy Not tainted 6.12.13-gentoo-dist #1 Hardware name: /AMD HUDSON-M1, BIOS 4.6.4 11/15/2011 RIP: 0010:mt792x_rx_get_wcid+0x48/0x140 [mt792x_lib] RSP: 0018:ffffa147c055fd98 EFLAGS: 00010202 RAX: 0000000000000000 RBX: ffff8e9ecb652000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8e9ecb652000 RBP: 0000000000000685 R08: ffff8e9ec6570000 R09: 0000000000000000 R10: ffff8e9ecd2ca000 R11: ffff8e9f22a217c0 R12: 0000000038010119 R13: 0000000080843801 R14: ffff8e9ec6570000 R15: ffff8e9ecb652000 FS: 0000000000000000(0000) GS:ffff8e9f22a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000400 CR3: 000000000d2ea000 CR4: 00000000000006f0 Call Trace: <TASK> ? __die_body.cold+0x19/0x27 ? page_fault_oops+0x15a/0x2f0 ? search_module_extables+0x19/0x60 ? search_bpf_extables+0x5f/0x80 ? exc_page_fault+0x7e/0x180 ? asm_exc_page_fault+0x26/0x30 ? mt792x_rx_get_wcid+0x48/0x140 [mt792x_lib] mt7921_queue_rx_skb+0x1c6/0xaa0 [mt7921_common] mt76u_alloc_queues+0x784/0x810 [mt76_usb] ? __pfx___mt76_worker_fn+0x10/0x10 [mt76] __mt76_worker_fn+0x4f/0x80 [mt76] kthread+0xd2/0x100 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x34/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> ---[ end trace 0000000000000000 ]---
In the Linux kernel, the following vulnerability has been resolved: HID: appleir: Fix potential NULL dereference at raw event handle Syzkaller reports a NULL pointer dereference issue in input_event(). BUG: KASAN: null-ptr-deref in instrument_atomic_read include/linux/instrumented.h:68 [inline] BUG: KASAN: null-ptr-deref in _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline] BUG: KASAN: null-ptr-deref in is_event_supported drivers/input/input.c:67 [inline] BUG: KASAN: null-ptr-deref in input_event+0x42/0xa0 drivers/input/input.c:395 Read of size 8 at addr 0000000000000028 by task syz-executor199/2949 CPU: 0 UID: 0 PID: 2949 Comm: syz-executor199 Not tainted 6.13.0-rc4-syzkaller-00076-gf097a36ef88d #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 kasan_report+0xd9/0x110 mm/kasan/report.c:602 check_region_inline mm/kasan/generic.c:183 [inline] kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189 instrument_atomic_read include/linux/instrumented.h:68 [inline] _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline] is_event_supported drivers/input/input.c:67 [inline] input_event+0x42/0xa0 drivers/input/input.c:395 input_report_key include/linux/input.h:439 [inline] key_down drivers/hid/hid-appleir.c:159 [inline] appleir_raw_event+0x3e5/0x5e0 drivers/hid/hid-appleir.c:232 __hid_input_report.constprop.0+0x312/0x440 drivers/hid/hid-core.c:2111 hid_ctrl+0x49f/0x550 drivers/hid/usbhid/hid-core.c:484 __usb_hcd_giveback_urb+0x389/0x6e0 drivers/usb/core/hcd.c:1650 usb_hcd_giveback_urb+0x396/0x450 drivers/usb/core/hcd.c:1734 dummy_timer+0x17f7/0x3960 drivers/usb/gadget/udc/dummy_hcd.c:1993 __run_hrtimer kernel/time/hrtimer.c:1739 [inline] __hrtimer_run_queues+0x20a/0xae0 kernel/time/hrtimer.c:1803 hrtimer_run_softirq+0x17d/0x350 kernel/time/hrtimer.c:1820 handle_softirqs+0x206/0x8d0 kernel/softirq.c:561 __do_softirq kernel/softirq.c:595 [inline] invoke_softirq kernel/softirq.c:435 [inline] __irq_exit_rcu+0xfa/0x160 kernel/softirq.c:662 irq_exit_rcu+0x9/0x30 kernel/softirq.c:678 instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline] sysvec_apic_timer_interrupt+0x90/0xb0 arch/x86/kernel/apic/apic.c:1049 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:702 __mod_timer+0x8f6/0xdc0 kernel/time/timer.c:1185 add_timer+0x62/0x90 kernel/time/timer.c:1295 schedule_timeout+0x11f/0x280 kernel/time/sleep_timeout.c:98 usbhid_wait_io+0x1c7/0x380 drivers/hid/usbhid/hid-core.c:645 usbhid_init_reports+0x19f/0x390 drivers/hid/usbhid/hid-core.c:784 hiddev_ioctl+0x1133/0x15b0 drivers/hid/usbhid/hiddev.c:794 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl fs/ioctl.c:892 [inline] __x64_sys_ioctl+0x190/0x200 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f </TASK> This happens due to the malformed report items sent by the emulated device which results in a report, that has no fields, being added to the report list. Due to this appleir_input_configured() is never called, hidinput_connect() fails which results in the HID_CLAIMED_INPUT flag is not being set. However, it does not make appleir_probe() fail and lets the event callback to be called without the associated input device. Thus, add a check for the HID_CLAIMED_INPUT flag and leave the event hook early if the driver didn't claim any input_dev for some reason. Moreover, some other hid drivers accessing input_dev in their event callbacks do have similar checks, too. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
In the Linux kernel 4.15.0, a NULL pointer dereference was discovered in hfs_ext_read_extent in hfs.ko. This can occur during a mount of a crafted hfs filesystem.
In the Linux kernel, the following vulnerability has been resolved: usb: hub: Guard against accesses to uninitialized BOS descriptors Many functions in drivers/usb/core/hub.c and drivers/usb/core/hub.h access fields inside udev->bos without checking if it was allocated and initialized. If usb_get_bos_descriptor() fails for whatever reason, udev->bos will be NULL and those accesses will result in a crash: BUG: kernel NULL pointer dereference, address: 0000000000000018 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 5 PID: 17818 Comm: kworker/5:1 Tainted: G W 5.15.108-18910-gab0e1cb584e1 #1 <HASH:1f9e 1> Hardware name: Google Kindred/Kindred, BIOS Google_Kindred.12672.413.0 02/03/2021 Workqueue: usb_hub_wq hub_event RIP: 0010:hub_port_reset+0x193/0x788 Code: 89 f7 e8 20 f7 15 00 48 8b 43 08 80 b8 96 03 00 00 03 75 36 0f b7 88 92 03 00 00 81 f9 10 03 00 00 72 27 48 8b 80 a8 03 00 00 <48> 83 78 18 00 74 19 48 89 df 48 8b 75 b0 ba 02 00 00 00 4c 89 e9 RSP: 0018:ffffab740c53fcf8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffffa1bc5f678000 RCX: 0000000000000310 RDX: fffffffffffffdff RSI: 0000000000000286 RDI: ffffa1be9655b840 RBP: ffffab740c53fd70 R08: 00001b7d5edaa20c R09: ffffffffb005e060 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: ffffab740c53fd3e R14: 0000000000000032 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffffa1be96540000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000018 CR3: 000000022e80c005 CR4: 00000000003706e0 Call Trace: hub_event+0x73f/0x156e ? hub_activate+0x5b7/0x68f process_one_work+0x1a2/0x487 worker_thread+0x11a/0x288 kthread+0x13a/0x152 ? process_one_work+0x487/0x487 ? kthread_associate_blkcg+0x70/0x70 ret_from_fork+0x1f/0x30 Fall back to a default behavior if the BOS descriptor isn't accessible and skip all the functionalities that depend on it: LPM support checks, Super Speed capabilitiy checks, U1/U2 states setup.
In the Linux kernel, the following vulnerability has been resolved: vfio/mdev: Fix a null-ptr-deref bug for mdev_unregister_parent() Inject fault while probing mdpy.ko, if kstrdup() of create_dir() fails in kobject_add_internal() in kobject_init_and_add() in mdev_type_add() in parent_create_sysfs_files(), it will return 0 and probe successfully. And when rmmod mdpy.ko, the mdpy_dev_exit() will call mdev_unregister_parent(), the mdev_type_remove() may traverse uninitialized parent->types[i] in parent_remove_sysfs_files(), and it will cause below null-ptr-deref. If mdev_type_add() fails, return the error code and kset_unregister() to fix the issue. general protection fault, probably for non-canonical address 0xdffffc0000000002: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017] CPU: 2 PID: 10215 Comm: rmmod Tainted: G W N 6.6.0-rc2+ #20 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:__kobject_del+0x62/0x1c0 Code: 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 51 01 00 00 48 b8 00 00 00 00 00 fc ff df 48 8b 6b 28 48 8d 7d 10 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 24 01 00 00 48 8b 75 10 48 89 df 48 8d 6b 3c e8 RSP: 0018:ffff88810695fd30 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: ffffffffa0270268 RCX: 0000000000000000 RDX: 0000000000000002 RSI: 0000000000000004 RDI: 0000000000000010 RBP: 0000000000000000 R08: 0000000000000001 R09: ffffed10233a4ef1 R10: ffff888119d2778b R11: 0000000063666572 R12: 0000000000000000 R13: fffffbfff404e2d4 R14: dffffc0000000000 R15: ffffffffa0271660 FS: 00007fbc81981540(0000) GS:ffff888119d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fc14a142dc0 CR3: 0000000110a62003 CR4: 0000000000770ee0 DR0: ffffffff8fb0bce8 DR1: ffffffff8fb0bce9 DR2: ffffffff8fb0bcea DR3: ffffffff8fb0bceb DR6: 00000000fffe0ff0 DR7: 0000000000000600 PKRU: 55555554 Call Trace: <TASK> ? die_addr+0x3d/0xa0 ? exc_general_protection+0x144/0x220 ? asm_exc_general_protection+0x22/0x30 ? __kobject_del+0x62/0x1c0 kobject_del+0x32/0x50 parent_remove_sysfs_files+0xd6/0x170 [mdev] mdev_unregister_parent+0xfb/0x190 [mdev] ? mdev_register_parent+0x270/0x270 [mdev] ? find_module_all+0x9d/0xe0 mdpy_dev_exit+0x17/0x63 [mdpy] __do_sys_delete_module.constprop.0+0x2fa/0x4b0 ? module_flags+0x300/0x300 ? __fput+0x4e7/0xa00 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7fbc813221b7 Code: 73 01 c3 48 8b 0d d1 8c 2c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 b8 b0 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d a1 8c 2c 00 f7 d8 64 89 01 48 RSP: 002b:00007ffe780e0648 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 00007ffe780e06a8 RCX: 00007fbc813221b7 RDX: 000000000000000a RSI: 0000000000000800 RDI: 000055e214df9b58 RBP: 000055e214df9af0 R08: 00007ffe780df5c1 R09: 0000000000000000 R10: 00007fbc8139ecc0 R11: 0000000000000206 R12: 00007ffe780e0870 R13: 00007ffe780e0ed0 R14: 000055e214df9260 R15: 000055e214df9af0 </TASK> Modules linked in: mdpy(-) mdev vfio_iommu_type1 vfio [last unloaded: mdpy] Dumping ftrace buffer: (ftrace buffer empty) ---[ end trace 0000000000000000 ]--- RIP: 0010:__kobject_del+0x62/0x1c0 Code: 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 51 01 00 00 48 b8 00 00 00 00 00 fc ff df 48 8b 6b 28 48 8d 7d 10 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 24 01 00 00 48 8b 75 10 48 89 df 48 8d 6b 3c e8 RSP: 0018:ffff88810695fd30 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: ffffffffa0270268 RCX: 0000000000000000 RDX: 0000000000000002 RSI: 0000000000000004 RDI: 0000000000000010 RBP: 0000000000000000 R08: 0000000000000001 R09: ffffed10233a4ef1 R10: ffff888119d2778b R11: 0000000063666572 R12: 0000000000000000 R13: fffffbfff404e2d4 R14: dffffc0000000000 R15: ffffffffa0271660 FS: 00007fbc81981540(0000) GS:ffff888119d00000(000 ---truncated---
In the Linux kernel, the following vulnerability has been resolved: i915/perf: Fix NULL deref bugs with drm_dbg() calls When i915 perf interface is not available dereferencing it will lead to NULL dereferences. As returning -ENOTSUPP is pretty clear return when perf interface is not available. [tursulin: added stable tag] (cherry picked from commit 36f27350ff745bd228ab04d7845dfbffc177a889)
In the Linux kernel, the following vulnerability has been resolved: fs: Pass AT_GETATTR_NOSEC flag to getattr interface function When vfs_getattr_nosec() calls a filesystem's getattr interface function then the 'nosec' should propagate into this function so that vfs_getattr_nosec() can again be called from the filesystem's gettattr rather than vfs_getattr(). The latter would add unnecessary security checks that the initial vfs_getattr_nosec() call wanted to avoid. Therefore, introduce the getattr flag GETATTR_NOSEC and allow to pass with the new getattr_flags parameter to the getattr interface function. In overlayfs and ecryptfs use this flag to determine which one of the two functions to call. In a recent code change introduced to IMA vfs_getattr_nosec() ended up calling vfs_getattr() in overlayfs, which in turn called security_inode_getattr() on an exiting process that did not have current->fs set anymore, which then caused a kernel NULL pointer dereference. With this change the call to security_inode_getattr() can be avoided, thus avoiding the NULL pointer dereference.
In the Linux kernel, the following vulnerability has been resolved: sockmap, vsock: For connectible sockets allow only connected sockmap expects all vsocks to have a transport assigned, which is expressed in vsock_proto::psock_update_sk_prot(). However, there is an edge case where an unconnected (connectible) socket may lose its previously assigned transport. This is handled with a NULL check in the vsock/BPF recv path. Another design detail is that listening vsocks are not supposed to have any transport assigned at all. Which implies they are not supported by the sockmap. But this is complicated by the fact that a socket, before switching to TCP_LISTEN, may have had some transport assigned during a failed connect() attempt. Hence, we may end up with a listening vsock in a sockmap, which blows up quickly: KASAN: null-ptr-deref in range [0x0000000000000120-0x0000000000000127] CPU: 7 UID: 0 PID: 56 Comm: kworker/7:0 Not tainted 6.14.0-rc1+ Workqueue: vsock-loopback vsock_loopback_work RIP: 0010:vsock_read_skb+0x4b/0x90 Call Trace: sk_psock_verdict_data_ready+0xa4/0x2e0 virtio_transport_recv_pkt+0x1ca8/0x2acc vsock_loopback_work+0x27d/0x3f0 process_one_work+0x846/0x1420 worker_thread+0x5b3/0xf80 kthread+0x35a/0x700 ret_from_fork+0x2d/0x70 ret_from_fork_asm+0x1a/0x30 For connectible sockets, instead of relying solely on the state of vsk->transport, tell sockmap to only allow those representing established connections. This aligns with the behaviour for AF_INET and AF_UNIX.
In the Linux kernel, the following vulnerability has been resolved: apparmor: Fix null pointer deref when receiving skb during sock creation The panic below is observed when receiving ICMP packets with secmark set while an ICMP raw socket is being created. SK_CTX(sk)->label is updated in apparmor_socket_post_create(), but the packet is delivered to the socket before that, causing the null pointer dereference. Drop the packet if label context is not set. BUG: kernel NULL pointer dereference, address: 000000000000004c #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 407 Comm: a.out Not tainted 6.4.12-arch1-1 #1 3e6fa2753a2d75925c34ecb78e22e85a65d083df Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 05/28/2020 RIP: 0010:aa_label_next_confined+0xb/0x40 Code: 00 00 48 89 ef e8 d5 25 0c 00 e9 66 ff ff ff 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 0f 1f 00 0f 1f 44 00 00 89 f0 <8b> 77 4c 39 c6 7e 1f 48 63 d0 48 8d 14 d7 eb 0b 83 c0 01 48 83 c2 RSP: 0018:ffffa92940003b08 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 000000000000000e RDX: ffffa92940003be8 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff8b57471e7800 R08: ffff8b574c642400 R09: 0000000000000002 R10: ffffffffbd820eeb R11: ffffffffbeb7ff00 R12: ffff8b574c642400 R13: 0000000000000001 R14: 0000000000000001 R15: 0000000000000000 FS: 00007fb092ea7640(0000) GS:ffff8b577bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000000000004c CR3: 00000001020f2005 CR4: 00000000007706f0 PKRU: 55555554 Call Trace: <IRQ> ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? exc_page_fault+0x7f/0x180 ? asm_exc_page_fault+0x26/0x30 ? aa_label_next_confined+0xb/0x40 apparmor_secmark_check+0xec/0x330 security_sock_rcv_skb+0x35/0x50 sk_filter_trim_cap+0x47/0x250 sock_queue_rcv_skb_reason+0x20/0x60 raw_rcv+0x13c/0x210 raw_local_deliver+0x1f3/0x250 ip_protocol_deliver_rcu+0x4f/0x2f0 ip_local_deliver_finish+0x76/0xa0 __netif_receive_skb_one_core+0x89/0xa0 netif_receive_skb+0x119/0x170 ? __netdev_alloc_skb+0x3d/0x140 vmxnet3_rq_rx_complete+0xb23/0x1010 [vmxnet3 56a84f9c97178c57a43a24ec073b45a9d6f01f3a] vmxnet3_poll_rx_only+0x36/0xb0 [vmxnet3 56a84f9c97178c57a43a24ec073b45a9d6f01f3a] __napi_poll+0x28/0x1b0 net_rx_action+0x2a4/0x380 __do_softirq+0xd1/0x2c8 __irq_exit_rcu+0xbb/0xf0 common_interrupt+0x86/0xa0 </IRQ> <TASK> asm_common_interrupt+0x26/0x40 RIP: 0010:apparmor_socket_post_create+0xb/0x200 Code: 08 48 85 ff 75 a1 eb b1 0f 1f 80 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 41 54 <55> 48 89 fd 53 45 85 c0 0f 84 b2 00 00 00 48 8b 1d 80 56 3f 02 48 RSP: 0018:ffffa92940ce7e50 EFLAGS: 00000286 RAX: ffffffffbc756440 RBX: 0000000000000000 RCX: 0000000000000001 RDX: 0000000000000003 RSI: 0000000000000002 RDI: ffff8b574eaab740 RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000 R10: ffff8b57444cec70 R11: 0000000000000000 R12: 0000000000000003 R13: 0000000000000002 R14: ffff8b574eaab740 R15: ffffffffbd8e4748 ? __pfx_apparmor_socket_post_create+0x10/0x10 security_socket_post_create+0x4b/0x80 __sock_create+0x176/0x1f0 __sys_socket+0x89/0x100 __x64_sys_socket+0x17/0x20 do_syscall_64+0x5d/0x90 ? do_syscall_64+0x6c/0x90 ? do_syscall_64+0x6c/0x90 ? do_syscall_64+0x6c/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc
In the Linux kernel, the following vulnerability has been resolved: tracing: Have trace_event_file have ref counters The following can crash the kernel: # cd /sys/kernel/tracing # echo 'p:sched schedule' > kprobe_events # exec 5>>events/kprobes/sched/enable # > kprobe_events # exec 5>&- The above commands: 1. Change directory to the tracefs directory 2. Create a kprobe event (doesn't matter what one) 3. Open bash file descriptor 5 on the enable file of the kprobe event 4. Delete the kprobe event (removes the files too) 5. Close the bash file descriptor 5 The above causes a crash! BUG: kernel NULL pointer dereference, address: 0000000000000028 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 6 PID: 877 Comm: bash Not tainted 6.5.0-rc4-test-00008-g2c6b6b1029d4-dirty #186 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 RIP: 0010:tracing_release_file_tr+0xc/0x50 What happens here is that the kprobe event creates a trace_event_file "file" descriptor that represents the file in tracefs to the event. It maintains state of the event (is it enabled for the given instance?). Opening the "enable" file gets a reference to the event "file" descriptor via the open file descriptor. When the kprobe event is deleted, the file is also deleted from the tracefs system which also frees the event "file" descriptor. But as the tracefs file is still opened by user space, it will not be totally removed until the final dput() is called on it. But this is not true with the event "file" descriptor that is already freed. If the user does a write to or simply closes the file descriptor it will reference the event "file" descriptor that was just freed, causing a use-after-free bug. To solve this, add a ref count to the event "file" descriptor as well as a new flag called "FREED". The "file" will not be freed until the last reference is released. But the FREE flag will be set when the event is removed to prevent any more modifications to that event from happening, even if there's still a reference to the event "file" descriptor.
In the Linux kernel, the following vulnerability has been resolved: efi: fix potential NULL deref in efi_mem_reserve_persistent When iterating on a linked list, a result of memremap is dereferenced without checking it for NULL. This patch adds a check that falls back on allocating a new page in case memremap doesn't succeed. Found by Linux Verification Center (linuxtesting.org) with SVACE. [ardb: return -ENOMEM instead of breaking out of the loop]
In the Linux kernel, the following vulnerability has been resolved: HID: betop: check shape of output reports betopff_init() only checks the total sum of the report counts for each report field to be at least 4, but hid_betopff_play() expects 4 report fields. A device advertising an output report with one field and 4 report counts would pass the check but crash the kernel with a NULL pointer dereference in hid_betopff_play().
In the Linux kernel, the following vulnerability has been resolved: cxl/mem: Fix shutdown order Ira reports that removing cxl_mock_mem causes a crash with the following trace: BUG: kernel NULL pointer dereference, address: 0000000000000044 [..] RIP: 0010:cxl_region_decode_reset+0x7f/0x180 [cxl_core] [..] Call Trace: <TASK> cxl_region_detach+0xe8/0x210 [cxl_core] cxl_decoder_kill_region+0x27/0x40 [cxl_core] cxld_unregister+0x29/0x40 [cxl_core] devres_release_all+0xb8/0x110 device_unbind_cleanup+0xe/0x70 device_release_driver_internal+0x1d2/0x210 bus_remove_device+0xd7/0x150 device_del+0x155/0x3e0 device_unregister+0x13/0x60 devm_release_action+0x4d/0x90 ? __pfx_unregister_port+0x10/0x10 [cxl_core] delete_endpoint+0x121/0x130 [cxl_core] devres_release_all+0xb8/0x110 device_unbind_cleanup+0xe/0x70 device_release_driver_internal+0x1d2/0x210 bus_remove_device+0xd7/0x150 device_del+0x155/0x3e0 ? lock_release+0x142/0x290 cdev_device_del+0x15/0x50 cxl_memdev_unregister+0x54/0x70 [cxl_core] This crash is due to the clearing out the cxl_memdev's driver context (@cxlds) before the subsystem is done with it. This is ultimately due to the region(s), that this memdev is a member, being torn down and expecting to be able to de-reference @cxlds, like here: static int cxl_region_decode_reset(struct cxl_region *cxlr, int count) ... if (cxlds->rcd) goto endpoint_reset; ... Fix it by keeping the driver context valid until memdev-device unregistration, and subsequently the entire stack of related dependencies, unwinds.
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix a NULL pointer dereference in amdgpu_dm_i2c_xfer() When ddc_service_construct() is called, it explicitly checks both the link type and whether there is something on the link which will dictate whether the pin is marked as hw_supported. If the pin isn't set or the link is not set (such as from unloading/reloading amdgpu in an IGT test) then fail the amdgpu_dm_i2c_xfer() call.
In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: clk-mt2701: Add check for mtk_alloc_clk_data Add the check for the return value of mtk_alloc_clk_data() in order to avoid NULL pointer dereference.
In the Linux kernel, the following vulnerability has been resolved: serial: 8250_port: Check IRQ data before use In case the leaf driver wants to use IRQ polling (irq = 0) and IIR register shows that an interrupt happened in the 8250 hardware the IRQ data can be NULL. In such a case we need to skip the wake event as we came to this path from the timer interrupt and quite likely system is already awake. Without this fix we have got an Oops: serial8250: ttyS0 at I/O 0x3f8 (irq = 0, base_baud = 115200) is a 16550A ... BUG: kernel NULL pointer dereference, address: 0000000000000010 RIP: 0010:serial8250_handle_irq+0x7c/0x240 Call Trace: ? serial8250_handle_irq+0x7c/0x240 ? __pfx_serial8250_timeout+0x10/0x10
In the Linux kernel, the following vulnerability has been resolved: nvme-fc: Prevent null pointer dereference in nvme_fc_io_getuuid() The nvme_fc_fcp_op structure describing an AEN operation is initialized with a null request structure pointer. An FC LLDD may make a call to nvme_fc_io_getuuid passing a pointer to an nvmefc_fcp_req for an AEN operation. Add validation of the request structure pointer before dereference.
In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix kernel NULL pointer dereference in gfs2_rgrp_dump Syzkaller has reported a NULL pointer dereference when accessing rgd->rd_rgl in gfs2_rgrp_dump(). This can happen when creating rgd->rd_gl fails in read_rindex_entry(). Add a NULL pointer check in gfs2_rgrp_dump() to prevent that.
In the Linux kernel, the following vulnerability has been resolved: media: vidtv: mux: Add check and kfree for kstrdup Add check for the return value of kstrdup() and return the error if it fails in order to avoid NULL pointer dereference. Moreover, use kfree() in the later error handling in order to avoid memory leak.
A vulnerability was found in Linux Kernel where in the spk_ttyio_receive_buf2() function, it would dereference spk_ttyio_synth without checking whether it is NULL or not, and may lead to a NULL-ptr deref crash.
In the Linux kernel, the following vulnerability has been resolved: scsi: ibmvfc: Remove BUG_ON in the case of an empty event pool In practice the driver should never send more commands than are allocated to a queue's event pool. In the unlikely event that this happens, the code asserts a BUG_ON, and in the case that the kernel is not configured to crash on panic returns a junk event pointer from the empty event list causing things to spiral from there. This BUG_ON is a historical artifact of the ibmvfc driver first being upstreamed, and it is well known now that the use of BUG_ON is bad practice except in the most unrecoverable scenario. There is nothing about this scenario that prevents the driver from recovering and carrying on. Remove the BUG_ON in question from ibmvfc_get_event() and return a NULL pointer in the case of an empty event pool. Update all call sites to ibmvfc_get_event() to check for a NULL pointer and perfrom the appropriate failure or recovery action.