Integer overflow in the oom_badness function in mm/oom_kill.c in the Linux kernel before 3.1.8 on 64-bit platforms allows local users to cause a denial of service (memory consumption or process termination) by using a certain large amount of memory.
In the Linux kernel, the following vulnerability has been resolved: media: v4l2-tpg: fix some memleaks in tpg_alloc In tpg_alloc, resources should be deallocated in each and every error-handling paths, since they are allocated in for statements. Otherwise there would be memleaks because tpg_free is called only when tpg_alloc return 0.
In the Linux kernel, the following vulnerability has been resolved: SUNRPC: fix some memleaks in gssx_dec_option_array The creds and oa->data need to be freed in the error-handling paths after their allocation. So this patch add these deallocations in the corresponding paths.
In the Linux kernel, the following vulnerability has been resolved: media: go7007: fix a memleak in go7007_load_encoder In go7007_load_encoder, bounce(i.e. go->boot_fw), is allocated without a deallocation thereafter. After the following call chain: saa7134_go7007_init |-> go7007_boot_encoder |-> go7007_load_encoder |-> kfree(go) go is freed and thus bounce is leaked.
In the Linux kernel, the following vulnerability has been resolved: fbdev: sis: Error out if pixclock equals zero The userspace program could pass any values to the driver through ioctl() interface. If the driver doesn't check the value of pixclock, it may cause divide-by-zero error. In sisfb_check_var(), var->pixclock is used as a divisor to caculate drate before it is checked against zero. Fix this by checking it at the beginning. This is similar to CVE-2022-3061 in i740fb which was fixed by commit 15cf0b8.
In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_limit: reject configurations that cause integer overflow Reject bogus configs where internal token counter wraps around. This only occurs with very very large requests, such as 17gbyte/s. Its better to reject this rather than having incorrect ratelimit.
In the Linux kernel, the following vulnerability has been resolved: USB: usb-storage: Prevent divide-by-0 error in isd200_ata_command The isd200 sub-driver in usb-storage uses the HEADS and SECTORS values in the ATA ID information to calculate cylinder and head values when creating a CDB for READ or WRITE commands. The calculation involves division and modulus operations, which will cause a crash if either of these values is 0. While this never happens with a genuine device, it could happen with a flawed or subversive emulation, as reported by the syzbot fuzzer. Protect against this possibility by refusing to bind to the device if either the ATA_ID_HEADS or ATA_ID_SECTORS value in the device's ID information is 0. This requires isd200_Initialization() to return a negative error code when initialization fails; currently it always returns 0 (even when there is an error).
In the Linux kernel, the following vulnerability has been resolved: thermal/drivers/mediatek/lvts_thermal: Fix a memory leak in an error handling path If devm_krealloc() fails, then 'efuse' is leaking. So free it to avoid a leak.
In the Linux kernel, the following vulnerability has been resolved: media: imx: csc/scaler: fix v4l2_ctrl_handler memory leak Free the memory allocated in v4l2_ctrl_handler_init on release.
In the Linux kernel, the following vulnerability has been resolved: fbdev: savage: Error out if pixclock equals zero The userspace program could pass any values to the driver through ioctl() interface. If the driver doesn't check the value of pixclock, it may cause divide-by-zero error. Although pixclock is checked in savagefb_decode_var(), but it is not checked properly in savagefb_probe(). Fix this by checking whether pixclock is zero in the function savagefb_check_var() before info->var.pixclock is used as the divisor. This is similar to CVE-2022-3061 in i740fb which was fixed by commit 15cf0b8.
In the Linux kernel, the following vulnerability has been resolved: cachefiles: fix memory leak in cachefiles_add_cache() The following memory leak was reported after unbinding /dev/cachefiles: ================================================================== unreferenced object 0xffff9b674176e3c0 (size 192): comm "cachefilesd2", pid 680, jiffies 4294881224 hex dump (first 32 bytes): 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc ea38a44b): [<ffffffff8eb8a1a5>] kmem_cache_alloc+0x2d5/0x370 [<ffffffff8e917f86>] prepare_creds+0x26/0x2e0 [<ffffffffc002eeef>] cachefiles_determine_cache_security+0x1f/0x120 [<ffffffffc00243ec>] cachefiles_add_cache+0x13c/0x3a0 [<ffffffffc0025216>] cachefiles_daemon_write+0x146/0x1c0 [<ffffffff8ebc4a3b>] vfs_write+0xcb/0x520 [<ffffffff8ebc5069>] ksys_write+0x69/0xf0 [<ffffffff8f6d4662>] do_syscall_64+0x72/0x140 [<ffffffff8f8000aa>] entry_SYSCALL_64_after_hwframe+0x6e/0x76 ================================================================== Put the reference count of cache_cred in cachefiles_daemon_unbind() to fix the problem. And also put cache_cred in cachefiles_add_cache() error branch to avoid memory leaks.
In the Linux kernel, the following vulnerability has been resolved: media: ir_toy: fix a memleak in irtoy_tx When irtoy_command fails, buf should be freed since it is allocated by irtoy_tx, or there is a memleak.
In the Linux kernel, the following vulnerability has been resolved: IB/hfi1: Fix a memleak in init_credit_return When dma_alloc_coherent fails to allocate dd->cr_base[i].va, init_credit_return should deallocate dd->cr_base and dd->cr_base[i] that allocated before. Or those resources would be never freed and a memleak is triggered.
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid dividing by 0 in mb_update_avg_fragment_size() when block bitmap corrupt Determine if bb_fragments is 0 instead of determining bb_free to eliminate the risk of dividing by zero when the block bitmap is corrupted.
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: Fix memory leak This checks if CONFIG_DEV_COREDUMP is enabled before attempting to clone the skb and also make sure btmtk_process_coredump frees the skb passed following the same logic.
In the Linux kernel, the following vulnerability has been resolved: md: fix kmemleak of rdev->serial If kobject_add() is fail in bind_rdev_to_array(), 'rdev->serial' will be alloc not be freed, and kmemleak occurs. unreferenced object 0xffff88815a350000 (size 49152): comm "mdadm", pid 789, jiffies 4294716910 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc f773277a): [<0000000058b0a453>] kmemleak_alloc+0x61/0xe0 [<00000000366adf14>] __kmalloc_large_node+0x15e/0x270 [<000000002e82961b>] __kmalloc_node.cold+0x11/0x7f [<00000000f206d60a>] kvmalloc_node+0x74/0x150 [<0000000034bf3363>] rdev_init_serial+0x67/0x170 [<0000000010e08fe9>] mddev_create_serial_pool+0x62/0x220 [<00000000c3837bf0>] bind_rdev_to_array+0x2af/0x630 [<0000000073c28560>] md_add_new_disk+0x400/0x9f0 [<00000000770e30ff>] md_ioctl+0x15bf/0x1c10 [<000000006cfab718>] blkdev_ioctl+0x191/0x3f0 [<0000000085086a11>] vfs_ioctl+0x22/0x60 [<0000000018b656fe>] __x64_sys_ioctl+0xba/0xe0 [<00000000e54e675e>] do_syscall_64+0x71/0x150 [<000000008b0ad622>] entry_SYSCALL_64_after_hwframe+0x6c/0x74
In the Linux kernel, the following vulnerability has been resolved: amdkfd: use calloc instead of kzalloc to avoid integer overflow This uses calloc instead of doing the multiplication which might overflow.
In the Linux kernel, the following vulnerability has been resolved: net/handshake: Fix handshake_req_destroy_test1 Recently, handshake_req_destroy_test1 started failing: Expected handshake_req_destroy_test == req, but handshake_req_destroy_test == 0000000000000000 req == 0000000060f99b40 not ok 11 req_destroy works This is because "sock_release(sock)" was replaced with "fput(filp)" to address a memory leak. Note that sock_release() is synchronous but fput() usually delays the final close and clean-up. The delay is not consequential in the other cases that were changed but handshake_req_destroy_test1 is testing that handshake_req_cancel() followed by closing the file actually does call the ->hp_destroy method. Thus the PTR_EQ test at the end has to be sure that the final close is complete before it checks the pointer. We cannot use a completion here because if ->hp_destroy is never called (ie, there is an API bug) then the test will hang. Reported by: Guenter Roeck <linux@roeck-us.net>
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix memory leak in dm_sw_fini() After destroying dmub_srv, the memory associated with it is not freed, causing a memory leak: unreferenced object 0xffff896302b45800 (size 1024): comm "(udev-worker)", pid 222, jiffies 4294894636 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc 6265fd77): [<ffffffff993495ed>] kmalloc_trace+0x29d/0x340 [<ffffffffc0ea4a94>] dm_dmub_sw_init+0xb4/0x450 [amdgpu] [<ffffffffc0ea4e55>] dm_sw_init+0x15/0x2b0 [amdgpu] [<ffffffffc0ba8557>] amdgpu_device_init+0x1417/0x24e0 [amdgpu] [<ffffffffc0bab285>] amdgpu_driver_load_kms+0x15/0x190 [amdgpu] [<ffffffffc0ba09c7>] amdgpu_pci_probe+0x187/0x4e0 [amdgpu] [<ffffffff9968fd1e>] local_pci_probe+0x3e/0x90 [<ffffffff996918a3>] pci_device_probe+0xc3/0x230 [<ffffffff99805872>] really_probe+0xe2/0x480 [<ffffffff99805c98>] __driver_probe_device+0x78/0x160 [<ffffffff99805daf>] driver_probe_device+0x1f/0x90 [<ffffffff9980601e>] __driver_attach+0xce/0x1c0 [<ffffffff99803170>] bus_for_each_dev+0x70/0xc0 [<ffffffff99804822>] bus_add_driver+0x112/0x210 [<ffffffff99807245>] driver_register+0x55/0x100 [<ffffffff990012d1>] do_one_initcall+0x41/0x300 Fix this by freeing dmub_srv after destroying it.
In the Linux kernel, the following vulnerability has been resolved: Fix memory leak in posix_clock_open() If the clk ops.open() function returns an error, we don't release the pccontext we allocated for this clock. Re-organize the code slightly to make it all more obvious.
In the Linux kernel, the following vulnerability has been resolved: dm-integrity: fix a memory leak when rechecking the data Memory for the "checksums" pointer will leak if the data is rechecked after checksum failure (because the associated kfree won't happen due to 'goto skip_io'). Fix this by freeing the checksums memory before recheck, and just use the "checksum_onstack" memory for storing checksum during recheck.
A memory leak flaw was found in the Linux kernel's Stream Control Transmission Protocol. This issue may occur when a user starts a malicious networking service and someone connects to this service. This could allow a local user to starve resources, causing a denial of service.
A memory leak flaw was found in the UBI driver in drivers/mtd/ubi/attach.c in the Linux kernel through 6.7.4 for UBI_IOCATT, because kobj->name is not released.
In the Linux kernel, the following vulnerability has been resolved: drm/nouveau: fix several DMA buffer leaks Nouveau manages GSP-RM DMA buffers with nvkm_gsp_mem objects. Several of these buffers are never dealloced. Some of them can be deallocated right after GSP-RM is initialized, but the rest need to stay until the driver unloads. Also futher bullet-proof these objects by poisoning the buffer and clearing the nvkm_gsp_mem object when it is deallocated. Poisoning the buffer should trigger an error (or crash) from GSP-RM if it tries to access the buffer after we've deallocated it, because we were wrong about when it is safe to deallocate. Finally, change the mem->size field to a size_t because that's the same type that dma_alloc_coherent expects.
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: msft: Fix memory leak Fix leaking buffer allocated to send MSFT_OP_LE_MONITOR_ADVERTISEMENT.
In the Linux kernel, the following vulnerability has been resolved: net: wwan: iosm: fix memory leak in ipc_wwan_dellink IOSM driver registers network device without setting the needs_free_netdev flag, and does NOT call free_netdev() when unregisters network device, which causes a memory leak. This patch sets needs_free_netdev to true when registers network device, which makes netdev subsystem call free_netdev() automatically after unregister_netdevice().
In the Linux kernel, the following vulnerability has been resolved: bpf, verifier: Fix memory leak in array reallocation for stack state If an error (NULL) is returned by krealloc(), callers of realloc_array() were setting their allocation pointers to NULL, but on error krealloc() does not touch the original allocation. This would result in a memory resource leak. Instead, free the old allocation on the error handling path. The memory leak information is as follows as also reported by Zhengchao: unreferenced object 0xffff888019801800 (size 256): comm "bpf_repo", pid 6490, jiffies 4294959200 (age 17.170s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000b211474b>] __kmalloc_node_track_caller+0x45/0xc0 [<0000000086712a0b>] krealloc+0x83/0xd0 [<00000000139aab02>] realloc_array+0x82/0xe2 [<00000000b1ca41d1>] grow_stack_state+0xfb/0x186 [<00000000cd6f36d2>] check_mem_access.cold+0x141/0x1341 [<0000000081780455>] do_check_common+0x5358/0xb350 [<0000000015f6b091>] bpf_check.cold+0xc3/0x29d [<000000002973c690>] bpf_prog_load+0x13db/0x2240 [<00000000028d1644>] __sys_bpf+0x1605/0x4ce0 [<00000000053f29bd>] __x64_sys_bpf+0x75/0xb0 [<0000000056fedaf5>] do_syscall_64+0x35/0x80 [<000000002bd58261>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
In the Linux kernel, the following vulnerability has been resolved: crypto: qat - fix memory leak in RSA When an RSA key represented in form 2 (as defined in PKCS #1 V2.1) is used, some components of the private key persist even after the TFM is released. Replace the explicit calls to free the buffers in qat_rsa_exit_tfm() with a call to qat_rsa_clear_ctx() which frees all buffers referenced in the TFM context.
In the Linux kernel, the following vulnerability has been resolved: mISDN: fix possible memory leak in mISDN_register_device() Afer commit 1fa5ae857bb1 ("driver core: get rid of struct device's bus_id string array"), the name of device is allocated dynamically, add put_device() to give up the reference, so that the name can be freed in kobject_cleanup() when the refcount is 0. Set device class before put_device() to avoid null release() function WARN message in device_release().
In the Linux kernel, the following vulnerability has been resolved: capabilities: fix potential memleak on error path from vfs_getxattr_alloc() In cap_inode_getsecurity(), we will use vfs_getxattr_alloc() to complete the memory allocation of tmpbuf, if we have completed the memory allocation of tmpbuf, but failed to call handler->get(...), there will be a memleak in below logic: |-- ret = (int)vfs_getxattr_alloc(mnt_userns, ...) | /* ^^^ alloc for tmpbuf */ |-- value = krealloc(*xattr_value, error + 1, flags) | /* ^^^ alloc memory */ |-- error = handler->get(handler, ...) | /* error! */ |-- *xattr_value = value | /* xattr_value is &tmpbuf (memory leak!) */ So we will try to free(tmpbuf) after vfs_getxattr_alloc() fails to fix it. [PM: subject line and backtrace tweaks]
In the Linux kernel, the following vulnerability has been resolved: gpio: gpio-xilinx: Fix integer overflow Current implementation is not able to configure more than 32 pins due to incorrect data type. So type casting with unsigned long to avoid it.
In the Linux kernel, the following vulnerability has been resolved: amt: fix memory leak for advertisement message When a gateway receives an advertisement message, it extracts relay information and then it should be freed. But the advertisement handler doesn't free it. So, memory leak would occur.
In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: k3-udma-glue: fix memory leak when register device fail If device_register() fails, it should call put_device() to give up reference, the name allocated in dev_set_name() can be freed in callback function kobject_cleanup().
In the Linux kernel, the following vulnerability has been resolved: media: rga: fix possible memory leak in rga_probe rga->m2m_dev needs to be freed when rga_probe fails.
In the Linux kernel, the following vulnerability has been resolved: net: marvell: prestera: fix memory leak in prestera_rxtx_switch_init() When prestera_sdma_switch_init() failed, the memory pointed to by sw->rxtx isn't released. Fix it. Only be compiled, not be tested.
In the Linux kernel, the following vulnerability has been resolved: ima: Fix potential memory leak in ima_init_crypto() On failure to allocate the SHA1 tfm, IMA fails to initialize and exits without freeing the ima_algo_array. Add the missing kfree() for ima_algo_array to avoid the potential memory leak.
In the Linux kernel, the following vulnerability has been resolved: block: Fix possible memory leak for rq_wb on add_disk failure kmemleak reported memory leaks in device_add_disk(): kmemleak: 3 new suspected memory leaks unreferenced object 0xffff88800f420800 (size 512): comm "modprobe", pid 4275, jiffies 4295639067 (age 223.512s) hex dump (first 32 bytes): 04 00 00 00 08 00 00 00 01 00 00 00 00 00 00 00 ................ 00 e1 f5 05 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000d3662699>] kmalloc_trace+0x26/0x60 [<00000000edc7aadc>] wbt_init+0x50/0x6f0 [<0000000069601d16>] wbt_enable_default+0x157/0x1c0 [<0000000028fc393f>] blk_register_queue+0x2a4/0x420 [<000000007345a042>] device_add_disk+0x6fd/0xe40 [<0000000060e6aab0>] nbd_dev_add+0x828/0xbf0 [nbd] ... It is because the memory allocated in wbt_enable_default() is not released in device_add_disk() error path. Normally, these memory are freed in: del_gendisk() rq_qos_exit() rqos->ops->exit(rqos); wbt_exit() So rq_qos_exit() is called to free the rq_wb memory for wbt_init(). However in the error path of device_add_disk(), only blk_unregister_queue() is called and make rq_wb memory leaked. Add rq_qos_exit() to the error path to fix it.
In the Linux kernel, the following vulnerability has been resolved: ima: Fix a potential integer overflow in ima_appraise_measurement When the ima-modsig is enabled, the rc passed to evm_verifyxattr() may be negative, which may cause the integer overflow problem.
In the Linux kernel, the following vulnerability has been resolved: net: wwan: iosm: fix memory leak in ipc_pcie_read_bios_cfg ipc_pcie_read_bios_cfg() is using the acpi_evaluate_dsm() to obtain the wwan power state configuration from BIOS but is not freeing the acpi_object. The acpi_evaluate_dsm() returned acpi_object to be freed. Free the acpi_object after use.
In the Linux kernel, the following vulnerability has been resolved: nfc: fdp: Fix potential memory leak in fdp_nci_send() fdp_nci_send() will call fdp_nci_i2c_write that will not free skb in the function. As a result, when fdp_nci_i2c_write() finished, the skb will memleak. fdp_nci_send() should free skb after fdp_nci_i2c_write() finished.
In the Linux kernel, the following vulnerability has been resolved: nfc: nfcmrvl: Fix potential memory leak in nfcmrvl_i2c_nci_send() nfcmrvl_i2c_nci_send() will be called by nfcmrvl_nci_send(), and skb should be freed in nfcmrvl_i2c_nci_send(). However, nfcmrvl_nci_send() will only free skb when i2c_master_send() return >=0, which means skb will memleak when i2c_master_send() failed. Free skb no matter whether i2c_master_send() succeeds.
In the Linux kernel, the following vulnerability has been resolved: usb: dwc2: Fix memory leak in dwc2_hcd_init usb_create_hcd will alloc memory for hcd, and we should call usb_put_hcd to free it when platform_get_resource() fails to prevent memory leak. goto error2 label instead error1 to fix this.
In the Linux kernel, the following vulnerability has been resolved: net: dsa: Fix possible memory leaks in dsa_loop_init() kmemleak reported memory leaks in dsa_loop_init(): kmemleak: 12 new suspected memory leaks unreferenced object 0xffff8880138ce000 (size 2048): comm "modprobe", pid 390, jiffies 4295040478 (age 238.976s) backtrace: [<000000006a94f1d5>] kmalloc_trace+0x26/0x60 [<00000000a9c44622>] phy_device_create+0x5d/0x970 [<00000000d0ee2afc>] get_phy_device+0xf3/0x2b0 [<00000000dca0c71f>] __fixed_phy_register.part.0+0x92/0x4e0 [<000000008a834798>] fixed_phy_register+0x84/0xb0 [<0000000055223fcb>] dsa_loop_init+0xa9/0x116 [dsa_loop] ... There are two reasons for memleak in dsa_loop_init(). First, fixed_phy_register() create and register phy_device: fixed_phy_register() get_phy_device() phy_device_create() # freed by phy_device_free() phy_device_register() # freed by phy_device_remove() But fixed_phy_unregister() only calls phy_device_remove(). So the memory allocated in phy_device_create() is leaked. Second, when mdio_driver_register() fail in dsa_loop_init(), it just returns and there is no cleanup for phydevs. Fix the problems by catching the error of mdio_driver_register() in dsa_loop_init(), then calling both fixed_phy_unregister() and phy_device_free() to release phydevs. Also add a function for phydevs cleanup to avoid duplacate.
In the Linux kernel, the following vulnerability has been resolved: nfc: nfcmrvl: Fix memory leak in nfcmrvl_play_deferred Similar to the handling of play_deferred in commit 19cfe912c37b ("Bluetooth: btusb: Fix memory leak in play_deferred"), we thought a patch might be needed here as well. Currently usb_submit_urb is called directly to submit deferred tx urbs after unanchor them. So the usb_giveback_urb_bh would failed to unref it in usb_unanchor_urb and cause memory leak. Put those urbs in tx_anchor to avoid the leak, and also fix the error handling.
In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix signed integer overflow in __ip6_append_data Resurrect ubsan overflow checks and ubsan report this warning, fix it by change the variable [length] type to size_t. UBSAN: signed-integer-overflow in net/ipv6/ip6_output.c:1489:19 2147479552 + 8567 cannot be represented in type 'int' CPU: 0 PID: 253 Comm: err Not tainted 5.16.0+ #1 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x214/0x230 show_stack+0x30/0x78 dump_stack_lvl+0xf8/0x118 dump_stack+0x18/0x30 ubsan_epilogue+0x18/0x60 handle_overflow+0xd0/0xf0 __ubsan_handle_add_overflow+0x34/0x44 __ip6_append_data.isra.48+0x1598/0x1688 ip6_append_data+0x128/0x260 udpv6_sendmsg+0x680/0xdd0 inet6_sendmsg+0x54/0x90 sock_sendmsg+0x70/0x88 ____sys_sendmsg+0xe8/0x368 ___sys_sendmsg+0x98/0xe0 __sys_sendmmsg+0xf4/0x3b8 __arm64_sys_sendmmsg+0x34/0x48 invoke_syscall+0x64/0x160 el0_svc_common.constprop.4+0x124/0x300 do_el0_svc+0x44/0xc8 el0_svc+0x3c/0x1e8 el0t_64_sync_handler+0x88/0xb0 el0t_64_sync+0x16c/0x170 Changes since v1: -Change the variable [length] type to unsigned, as Eric Dumazet suggested. Changes since v2: -Don't change exthdrlen type in ip6_make_skb, as Paolo Abeni suggested. Changes since v3: -Don't change ulen type in udpv6_sendmsg and l2tp_ip6_sendmsg, as Jakub Kicinski suggested.
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: fix memory leak in query_regdb_file() In the function query_regdb_file() the alpha2 parameter is duplicated using kmemdup() and subsequently freed in regdb_fw_cb(). However, request_firmware_nowait() can fail without calling regdb_fw_cb() and thus leak memory.
In the Linux kernel, the following vulnerability has been resolved: drm: msm: fix possible memory leak in mdp5_crtc_cursor_set() drm_gem_object_lookup will call drm_gem_object_get inside. So cursor_bo needs to be put when msm_gem_get_and_pin_iova fails.
In the Linux kernel, the following vulnerability has been resolved: HID: hyperv: fix possible memory leak in mousevsc_probe() If hid_add_device() returns error, it should call hid_destroy_device() to free hid_dev which is allocated in hid_allocate_device().
In the Linux kernel, the following vulnerability has been resolved: usbnet: fix memory leak in error case usbnet_write_cmd_async() mixed up which buffers need to be freed in which error case. v2: add Fixes tag v3: fix uninitialized buf pointer
In the Linux kernel, the following vulnerability has been resolved: net: sfp: fix memory leak in sfp_probe() sfp_probe() allocates a memory chunk from sfp with sfp_alloc(). When devm_add_action() fails, sfp is not freed, which leads to a memory leak. We should use devm_add_action_or_reset() instead of devm_add_action().