Two OS command injection vulnerability exist in the vtysh_ubus toolsh_excute.constprop.1 functionality of Milesight UR32L v32.3.0.5. A specially-crafted network request can lead to command execution. An attacker can send a network request to trigger these vulnerabilities.This command injection is in the ping tool utility.
An OS command injection vulnerability exists in the vtysh_ubus _get_fw_logs functionality of Milesight UR32L v32.3.0.5. A specially crafted network request can lead to command execution. An attacker can send a network request to trigger this vulnerability.
An OS command injection vulnerability exists in the vtysh_ubus tcpdump_start_cb functionality of Milesight UR32L v32.3.0.5. A specially crafted HTTP request can lead to command execution. An authenticated attacker can send an HTTP request to trigger this vulnerability.
A stack-based buffer overflow vulnerability exists in the libzebra.so.0.0.0 security_decrypt_password functionality of Milesight UR32L v32.3.0.5. A specially crafted HTTP request can lead to a buffer overflow. An authenticated attacker can send an HTTP request to trigger this vulnerability.
A firmware update vulnerability exists in the luci2-io file-import functionality of Milesight UR32L v32.3.0.7-r2. A specially crafted network request can lead to arbitrary firmware update. An attacker can send a network request to trigger this vulnerability.
Two OS command injection vulnerabilities exist in the urvpn_client cmd_name_action functionality of Milesight UR32L v32.3.0.5. A specially crafted network request can lead to arbitrary command execution. An attacker can send a network request to trigger these vulnerabilities.This OS command injection is triggered through a UDP packet.
Two OS command injection vulnerabilities exist in the urvpn_client cmd_name_action functionality of Milesight UR32L v32.3.0.5. A specially crafted network request can lead to arbitrary command execution. An attacker can send a network request to trigger these vulnerabilities.This OS command injection is triggered through a TCP packet.
An OS command injection vulnerability exists in the ys_thirdparty system_user_script functionality of Milesight UR32L v32.3.0.5. A specially crafted series of network requests can lead to command execution. An attacker can send a sequence of requests to trigger this vulnerability.
An OS command injection vulnerability exists in the ys_thirdparty user_delete functionality of Milesight UR32L v32.3.0.5. A specially crafted network packet can lead to command execution. An attacker can send a sequence of requests to trigger this vulnerability.
An OS command injection vulnerability exists in the libzebra.so bridge_group functionality of Milesight UR32L v32.3.0.5. A specially crafted network packet can lead to command execution. An attacker can send a sequence of requests to trigger this vulnerability.
An os command injection vulnerability exists in the libzebra.so change_hostname functionality of Milesight UR32L v32.3.0.5. A specially-crafted network packets can lead to command execution. An attacker can send a sequence of requests to trigger this vulnerability.
An OS command injection vulnerability exists in the ys_thirdparty check_system_user functionality of Milesight UR32L v32.3.0.5. A specially crafted set of network packets can lead to command execution. An attacker can send a network request to trigger this vulnerability.
An os command injection vulnerability exists in the liburvpn.so create_private_key functionality of Milesight VPN v2.0.2. A specially-crafted network request can lead to command execution. An attacker can send a malicious packet to trigger this vulnerability.
Two OS command injection vulnerabilities exist in the zebra vlan_name functionality of Milesight UR32L v32.3.0.5. A specially crafted network request can lead to command execution. An attacker can send a network request to trigger these vulnerabilities.This command injection is in the code branch that manages a new vlan configuration.
Two OS command injection vulnerabilities exist in the zebra vlan_name functionality of Milesight UR32L v32.3.0.5. A specially crafted network request can lead to command execution. An attacker can send a network request to trigger these vulnerabilities.This command injection is in the code branch that manages an already existing vlan configuration.
Jenkins Pipeline: Multibranch Plugin 706.vd43c65dec013 and earlier uses the same checkout directories for distinct SCMs for the readTrusted step, allowing attackers with Item/Configure permission to invoke arbitrary OS commands on the controller through crafted SCM contents.
An OS command injection vulnerability in FortiWeb's management interface 6.3.7 and below, 6.2.3 and below, 6.1.x, 6.0.x, 5.9.x may allow a remote authenticated attacker to execute arbitrary commands on the system via the SAML server configuration page.
Jenkins Pipeline: Shared Groovy Libraries Plugin 552.vd9cc05b8a2e1 and earlier uses the same checkout directories for distinct SCMs for Pipeline libraries, allowing attackers with Item/Configure permission to invoke arbitrary OS commands on the controller through crafted SCM contents.
Command injection vulnerability in CWP v0.9.8.1126 that allows normal users to run commands as the root user.
Jenkins Pipeline: Groovy Plugin 2648.va9433432b33c and earlier uses the same checkout directories for distinct SCMs when reading the script file (typically Jenkinsfile) for Pipelines, allowing attackers with Item/Configure permission to invoke arbitrary OS commands on the controller through crafted SCM contents.
Vulnerability in Fidelis Network and Deception CommandPost enables authenticated command injection through the web interface using the “update_checkfile” value for the “filename” parameter. The vulnerability could allow a specially crafted HTTP request to execute system commands on the CommandPost and return results in an HTTP response via an authenticated session. The vulnerability is present in Fidelis Network and Deception versions prior to 9.4.5. Patches and updates are available to address this vulnerability.
Vulnerability in rconfig “date” enables an attacker with user level access to the CLI to inject root level commands into Fidelis Network and Deception CommandPost, Collector, Sensor, and Sandbox components as well as neighboring Fidelis components. The vulnerability is present in Fidelis Network and Deception versions prior to 9.4.5. Patches and updates are available to address this vulnerability.
Vulnerability in Fidelis Network and Deception CommandPost enables authenticated command injection through the web interface using the “check_vertica_upgrade” value for the “cpIp” parameter. The vulnerability could allow a specially crafted HTTP request to execute system commands on the CommandPost and return results in an HTTP response via an authenticated session. The vulnerability is present in Fidelis Network and Deception versions prior to 9.4.5. Patches and updates are available to address this vulnerability.
The snaptPowered2 component of Snapt Aria v12.8 was discovered to contain a command injection vulnerability. This vulnerability allows authenticated attackers to execute arbitrary commands.
Vulnerability in rconfig “remote_text_file” enables an attacker with user level access to the CLI to inject user level commands into Fidelis Network and Deception CommandPost, Collector, Sensor, and Sandbox components as well as neighboring Fidelis components. The vulnerability is present in Fidelis Network and Deception versions prior to 9.4.5. Patches and updates are available to address this vulnerability.
Vulnerability in rconfig “cert_utils” enables an attacker with user level access to the CLI to inject root level commands into Fidelis Network and Deception CommandPost, Collector, Sensor, and Sandbox components as well as neighboring Fidelis components. The vulnerability is present in Fidelis Network and Deception versions prior to 9.4.5. Patches and updates are available to address this vulnerability.
An issue was discovered in Relyum RELY-PCIe 22.2.1 and RELY-REC 23.1.0 devices, allowing authenticated command injection through the web interface.
In Apache Airflow, prior to version 2.2.4, some example DAGs did not properly sanitize user-provided params, making them susceptible to OS Command Injection from the web UI.
Vulnerability in Fidelis Network and Deception CommandPost enables authenticated command injection through the web interface using the “feed_comm_test” value for the “feed” parameter. The vulnerability could allow a specially crafted HTTP request to execute system commands on the CommandPost and return results in an HTTP response via an authenticated session. The vulnerability is present in Fidelis Network and Deception versions prior to 9.4.5. Patches and updates are available to address this vulnerability.
Improper neutralization of special elements used in an OS command ('OS Command Injection') vulnerability in task management component in Synology DiskStation Manager (DSM) before 6.2.4-25553 allows remote authenticated users to execute arbitrary commands via unspecified vectors.
OPNsense 25.1 contains an authenticated command injection vulnerability in its Bridge Interface Edit endpoint (interfaces_bridge_edit.php). The span POST parameter is concatenated into a system-level command without proper sanitization or escaping, allowing an administrator to inject arbitrary shell operators and payloads. Successful exploitation grants RCE with the privileges of the web service (typically root), potentially leading to full system compromise or lateral movement. This vulnerability arises from inadequate input validation and improper handling of user-supplied data in backend command invocations.
Improper neutralization of special elements used in a command ('Command Injection') vulnerability in File service functionality in Synology DiskStation Manager (DSM) before 6.2.4-25556-2 allows remote authenticated users to execute arbitrary commands via unspecified vectors.
An authenticated mySCADA myPRO 8.26.0 user may be able to modify parameters to run commands directly in the operating system.
Improper neutralization of special elements used in a user input allows an authenticated malicious user to perform remote code execution in the host system. This vulnerability impacts SonicWall Switch 1.1.1.0-2s and earlier versions
A critical issue has been discovered in GitLab affecting all versions starting from 14.0 prior to 14.10.5, 15.0 prior to 15.0.4, and 15.1 prior to 15.1.1 where an authenticated user authorized to import projects could import a maliciously crafted project leading to remote code execution.
A vulnerability in the web management interface of the Cisco Firepower Management Center (FMC) Software could allow an authenticated, remote attacker to execute arbitrary commands on the underlying operating system. The vulnerability is due to insufficient validation of user-supplied parameters for certain API endpoints. An attacker could exploit this vulnerability by sending crafted input to an affected API endpoint. A successful exploit could allow an attacker to execute arbitrary commands on the device with low system privileges. To successfully exploit this vulnerability, an attacker would need valid credentials for a user with Device permissions: by default, only Administrators, Security Approvers and Network Admins user accounts have these permissions.
A vulnerability in the web-based management interface of Cisco Identity Services Engine could allow an authenticated, remote attacker to inject arbitrary commands on the underlying operating system. This vulnerability is due to improper validation of user input within requests as part of the web-based management interface. An attacker could exploit this vulnerability by manipulating requests to the web-based management interface to contain operating system commands. A successful exploit could allow the attacker to execute arbitrary operating system commands on the underlying operating system with the privileges of the web services user. Cisco has not yet released software updates that address this vulnerability.
A vulnerability in the web management interface of Cisco AsyncOS for Cisco Secure Web Appliance, formerly Cisco Web Security Appliance (WSA), could allow an authenticated, remote attacker to perform a command injection and elevate privileges to root. This vulnerability is due to insufficient validation of user-supplied input for the web interface. An attacker could exploit this vulnerability by authenticating to the system and sending a crafted HTTP packet to the affected device. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system and elevate privileges to root. To successfully exploit this vulnerability, an attacker would need at least read-only credentials.Cisco has released software updates that address this vulnerability. There are no workarounds that address this vulnerability.Attention: Simplifying the Cisco portfolio includes the renaming of security products under one brand: Cisco Secure. For more information, see .
Jenkins Docker Commons Plugin 1.17 and earlier does not sanitize the name of an image or a tag, resulting in an OS command execution vulnerability exploitable by attackers with Item/Configure permission or able to control the contents of a previously configured job's SCM repository.
A vulnerability in the NX-API feature of Cisco NX-OS Software could allow an authenticated, remote attacker to execute arbitrary commands with root privileges. The vulnerability is due to insufficient input validation of user supplied data that is sent to the NX-API. An attacker could exploit this vulnerability by sending a crafted HTTP POST request to the NX-API of an affected device. A successful exploit could allow the attacker to execute arbitrary commands with root privileges on the underlying operating system. Note: The NX-API feature is disabled by default.
Command Injection Vulnerability in GitHub repository hestiacp/hestiacp prior to 1.5.12. An authenticated remote attacker with low privileges can execute arbitrary code under root context.
Improper neutralization of special elements in the SonicWall SSL-VPN SMA100 series management interface allows a remote authenticated attacker to inject OS Commands which potentially leads to remote command execution vulnerability or denial of service (DoS) attack.
PHOENIX CONTACT TC ROUTER 3002T-4G through 2.05.3, TC ROUTER 2002T-3G through 2.05.3, TC ROUTER 3002T-4G VZW through 2.05.3, TC ROUTER 3002T-4G ATT through 2.05.3, TC CLOUD CLIENT 1002-4G through 2.03.17, and TC CLOUD CLIENT 1002-TXTX through 1.03.17 devices allow authenticated users to inject system commands through a modified POST request to a specific URL.
OS Command Injection vulnerability in the db_optimize component of Device42 Asset Management Appliance allows an authenticated attacker to execute remote code on the device. This issue affects: Device42 CMDB version 18.01.00 and prior versions.
Nginx-UI is a web interface to manage Nginx configurations. It is vulnerable to arbitrary command execution by abusing the configuration settings. The `Home > Preference` page exposes a list of system settings such as `Run Mode`, `Jwt Secret`, `Node Secret` and `Terminal Start Command`. While the UI doesn't allow users to modify the `Terminal Start Command` setting, it is possible to do so by sending a request to the API. This issue may lead to authenticated remote code execution, privilege escalation, and information disclosure. This vulnerability has been patched in version 2.0.0.beta.9.
An authenticated user may be able to misuse parameters to inject arbitrary operating system commands into mySCADA myPRO versions 8.25.0 and prior.
In ThreatQuotient ThreatQ before 5.29.3, authenticated users are able to execute arbitrary commands by sending a crafted request to an API endpoint.
There is a command injection vulnerability that may allow an attacker to inject malicious input on the device's operating system.
A improper neutralization of special elements used in a command ('command injection') in Fortinet FortiManager versions 7.4.1 through 7.4.3, FortiManager Cloud versions 7.4.1 through 7.4.3 allows attacker to escalation of privilege via specifically crafted packets
OnCell G3470A-LTE Series firmware versions v1.7.7 and prior have been identified as vulnerable due to a lack of neutralized inputs in the web key upload function. An attacker could modify the intended commands sent to target functions, which could cause malicious users to execute unauthorized commands.