IBM Cloud Pak for Security 1.10.0.0 through 1.10.11.0 and IBM QRadar Suite Software 1.10.12.0 through 1.10.22.0 stores potentially sensitive information in log files that could be read by a local user. IBM X-Force ID: 281429.
The Tivoli Storage Manager (TSM) password may be displayed in plain text via application trace output while application tracing is enabled.
Relax-and-Recover (aka ReaR) through 2.7 creates a world-readable initrd when using GRUB_RESCUE=y. This allows local attackers to gain access to system secrets otherwise only readable by root.
A flaw was found in Red Hat Advanced Cluster Management through versions 2.10, before 2.10.7, 2.11, before 2.11.4, and 2.12, before 2.12.4. This vulnerability allows an unprivileged user to view confidential managed cluster credentials through the UI. This information should only be accessible to authorized users and may result in the loss of confidentiality of administrative information, which could be leaked to unauthorized actors.
IBM Spectrum Protect Operations Center 7.1, under special configurations, could allow a local user to obtain highly sensitive information. IBM X-Force ID: 209610.
IBM Storage Defender - Resiliency Service 2.0 contains hard-coded credentials, such as a password or cryptographic key, which it uses for its own inbound authentication, outbound communication to external components, or encryption of internal data. IBM X-Force ID: 278749.
IBM Storage Defender - Resiliency Service 2.0 stores user credentials in plain clear text which can be read by a local user. IBM X-Force ID: 278748.
IBM TXSeries for Multiplatforms 8.2 transmits or stores authentication credentials, but it uses an insecure method that is susceptible to unauthorized interception and/or retrieval. IBM X-Force ID: 280192.
IBM Security Verify Access OIDC Provider 22.09 through 23.03 could disclose sensitive information to a local user due to hazardous input validation. IBM X-Force ID: 279978.
An information disclosure flaw was found in Buildah, when building containers using chroot isolation. Running processes in container builds (e.g. Dockerfile RUN commands) can access environment variables from parent and grandparent processes. When run in a container in a CI/CD environment, environment variables may include sensitive information that was shared with the container in order to be used only by Buildah itself (e.g. container registry credentials).
An information disclosure flaw was found in ansible-core due to a failure to respect the ANSIBLE_NO_LOG configuration in some scenarios. Information is still included in the output in certain tasks, such as loop items. Depending on the task, this issue may include sensitive information, such as decrypted secret values.
NVIDIA GPU software for Linux contains a vulnerability where it can expose sensitive information to an actor that is not explicitly authorized to have access to that information. A successful exploit of this vulnerability might lead to information disclosure.
A flaw was found in Ansible Engine's ansible-connection module, where sensitive information such as the Ansible user credentials is disclosed by default in the traceback error message. The highest threat from this vulnerability is to confidentiality.
An access-control flaw was found in the OpenStack Designate component where private configuration information including access keys to BIND were improperly made world readable. A malicious attacker with access to any container could exploit this flaw to access sensitive information.
The IBM Security Access Manager appliance includes configuration files that contain obfuscated plaintext-passwords which authenticated users can access.
IBM Common Licensing 9.0 stores user credentials in plain clear text which can be read by a local user.
A flaw was found In 3Scale Admin Portal. If a user logs out from the personal tokens page and then presses the back button in the browser, the tokens page is rendered from the browser cache.
IBM API Connect V10.0.5.3 and V10.0.6.0 stores user credentials in browser cache which can be read by a local user. IBM X-Force ID: 271912.
IBM MQ Operator 2.0.0 LTS, 2.0.18 LTS, 3.0.0 CD, 3.0.1 CD, 2.4.0 through 2.4.7, 2.3.0 through 2.3.3, 2.2.0 through 2.2.2, and 2.3.0 through 2.3.3 stores or transmits user credentials in plain clear text which can be read by a local user using a trace command. IBM X-Force ID: 272638.
IBM Java Security Components in IBM SDK, Java Technology Edition 8 before SR1 FP10, 7 R1 before SR3 FP10, 7 before SR9 FP10, 6 R1 before SR8 FP7, 6 before SR16 FP7, and 5.0 before SR16 FP13 stores plaintext information in memory dumps, which allows local users to obtain sensitive information by reading a file.
IBM AIX 7.1, 7.2, and VIOS 3.1 could allow a non-privileged local user to exploit a vulnerability in the libc.a library to expose sensitive information. IBM X-Force ID: 206084.
IBM MQ Operator LTS 2.0.0 through 2.0.29, MQ Operator CD 3.0.0, 3.0.1, 3.1.0 through 3.1.3, 3.3.0, 3.4.0, 3.4.1, 3.5.0, 3.5.1, 3.6.0, and MQ Operator SC2 3.2.0 through 3.2.13 Container could disclose sensitive information to a local user due to improper clearing of heap memory before release.
IBM i2 iBase 8.9.13 and 9.0.0 could allow a local attacker to obtain sensitive information due to insufficient session expiration. IBM X-Force ID: 206213.
IBM Concert Software 1.0.0 through 1.1.0 contains hard-coded credentials, such as a password or cryptographic key, which it uses for its own inbound authentication, outbound communication to external components, or encryption of internal data.
A flaw was found in Red Hat's AMQ-Streams, which ships a version of the OKHttp component with an information disclosure flaw via an exception triggered by a header containing an illegal value. This issue could allow an authenticated attacker to access information outside of their regular permissions.
A Server-side request forgery (SSRF) flaw was found in Ansible Tower in versions before 3.6.5 and before 3.7.2. Functionality on the Tower server is abused by supplying a URL that could lead to the server processing it. This flaw leads to the connection to internal services or the exposure of additional internal services by abusing the test feature of lookup credentials to forge HTTP/HTTPS requests from the server and retrieving the results of the response.
The kernel in Red Hat Enterprise Linux 7 and MRG-2 does not clear garbage data for SG_IO buffer, which may leaking sensitive information to userspace.
A memory leak flaw was found in nft_set_catchall_flush in net/netfilter/nf_tables_api.c in the Linux Kernel. This issue may allow a local attacker to cause double-deactivations of catchall elements, which can result in a memory leak.
A vulnerability was found in libXpm due to a boundary condition within the XpmCreateXpmImageFromBuffer() function. This flaw allows a local attacker to trigger an out-of-bounds read error and read the contents of memory on the system.
A vulnerability was found in libX11 due to a boundary condition within the _XkbReadKeySyms() function. This flaw allows a local user to trigger an out-of-bounds read error and read the contents of memory on the system.
IBM Administration Runtime Expert for i 7.2, 7.3, 7.4, and 7.5 could allow a local user to obtain sensitive information caused by improper authority checks. IBM X-Force ID: 265266.
A flaw was found in Red Hat's AMQ Broker, which stores certain passwords in a secret security-properties-prop-module, defined in ActivemqArtemisSecurity CR; however, they are shown in plaintext in the StatefulSet details yaml of AMQ Broker.
A flaw was found in Red Hat AMQ Broker Operator, where it displayed a password defined in ActiveMQArtemisAddress CR, shown in plain text in the Operator Log. This flaw allows an authenticated local attacker to access information outside of their permissions.
IBM AIX 7.2, 7.3, VIOS 3.1's OpenSSH implementation could allow a non-privileged local user to access files outside of those allowed due to improper access controls. IBM X-Force ID: 263476.
Ansible before 1.5.5 constructs filenames containing user and password fields on the basis of deb lines in sources.list, which might allow local users to obtain sensitive credential information in opportunistic circumstances by leveraging existence of a file that uses the "deb http://user:pass@server:port/" format.
The installation process in IBM Security AppScan Enterprise 8.x before 8.6.0.2 iFix 003, 8.7.x before 8.7.0.1 iFix 003, 8.8.x before 8.8.0.1 iFix 002, and 9.0.x before 9.0.0.1 iFix 001 on Linux places a cleartext password in a temporary file, which allows local users to obtain sensitive information by reading this file.
Ansible before 1.5.5 sets 0644 permissions for sources.list, which might allow local users to obtain sensitive credential information in opportunistic circumstances by reading a file that uses the "deb http://user:pass@server:port/" format.
IBM Security Access Manager Container 10.0.0.0 through 10.0.6.1 does not require that docker images should have strong passwords by default, which makes it easier for attackers to compromise user accounts. IBM X-Force ID: 261196.
IBM Security Access Manager Docker 10.0.0.0 through 10.0.7.1 could disclose sensitive information to a local user to do improper permission controls. IBM X-Force ID: 261195.
rubygem-hammer_cli_foreman: File /etc/hammer/cli.modules.d/foreman.yml world readable
IBM WebSphere Application Server 8.5 and 9.0 could provide weaker than expected security, caused by the improper encoding in a local configuration file. IBM X-Force ID: 258637.
IBM Security Verify Information Queue 1.0.6 and 1.0.7 could disclose highly sensitive information to a local user due to inproper storage of a plaintext cryptographic key. IBM X-Force ID: 198187.
IBM Security Verify Bridge 1.0.5.0 does not properly validate a certificate which could allow a local attacker to obtain sensitive information that could aid in further attacks against the system. IBM X-Force ID: 196355.
IBM Sterling Partner Engagement Manager 6.2.2 could allow a local attacker to obtain sensitive information when a detailed technical error message is returned. IBM X-Force ID: 230933.
In Red Hat Openshift 1, weak default permissions are applied to the /etc/openshift/server_priv.pem file on the broker server, which could allow users with local access to the broker to read this file.
CloudForms stores user passwords in recoverable format
A flaw was found in s390 eBPF JIT in bpf_jit_insn in arch/s390/net/bpf_jit_comp.c in the Linux kernel. In this flaw, a local attacker with special user privilege can circumvent the verifier and may lead to a confidentiality problem.
A flaw was found in the permissions of a log file created by kexec-tools. This flaw allows a local unprivileged user to read this file and leak kernel internal information from a previous panic. The highest threat from this vulnerability is to confidentiality. This flaw affects kexec-tools shipped by Fedora versions prior to 2.0.21-8 and RHEL versions prior to 2.0.20-47.
IBM App Connect Enterprise Certified Container 8.1, 8.2, 9.0, 9.1, 9.2, 10.0, 10.1, 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, and 12.10 DesignerAuthoring instances store their flows in a database that is protected by weaker than expected cryptographic algorithms that could be decrypted by a local user.
IBM MQ 9.3 LTS, 9.3 CD, 9.4 LTS, and 9.4 CD stores potentially sensitive information in environment variables that could be obtained by a local user.