A vulnerability in Cisco Intersight Virtual Appliance could allow an unauthenticated, adjacent attacker to access internal HTTP services that are otherwise inaccessible. This vulnerability is due to insufficient restrictions on internally accessible http proxies. An attacker could exploit this vulnerability by submitting a crafted CLI command. A successful exploit could allow the attacker access to internal subnets beyond the sphere of their intended access level.
Multiple vulnerabilities exist in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Small Business 220 Series Smart Switches. An unauthenticated, adjacent attacker could perform the following: Execute code on the affected device or cause it to reload unexpectedly Cause LLDP database corruption on the affected device For more information about these vulnerabilities, see the Details section of this advisory. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). Cisco has released firmware updates that address these vulnerabilities.
Multiple vulnerabilities exist in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Small Business 220 Series Smart Switches. An unauthenticated, adjacent attacker could perform the following: Execute code on the affected device or cause it to reload unexpectedly Cause LLDP database corruption on the affected device For more information about these vulnerabilities, see the Details section of this advisory. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). Cisco has released firmware updates that address these vulnerabilities.
Multiple vulnerabilities exist in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Small Business 220 Series Smart Switches. An unauthenticated, adjacent attacker could perform the following: Execute code on the affected device or cause it to reload unexpectedly Cause LLDP database corruption on the affected device For more information about these vulnerabilities, see the Details section of this advisory. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). Cisco has released firmware updates that address these vulnerabilities.
Multiple vulnerabilities exist in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Small Business 220 Series Smart Switches. An unauthenticated, adjacent attacker could perform the following: Execute code on the affected device or cause it to reload unexpectedly Cause LLDP database corruption on the affected device For more information about these vulnerabilities, see the Details section of this advisory. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). Cisco has released firmware updates that address these vulnerabilities.
Multiple vulnerabilities exist in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Small Business 220 Series Smart Switches. An unauthenticated, adjacent attacker could perform the following: Execute code on the affected device or cause it to reload unexpectedly Cause LLDP database corruption on the affected device For more information about these vulnerabilities, see the Details section of this advisory. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). Cisco has released firmware updates that address these vulnerabilities.
A vulnerability in the IPv6 Router Advertisement (RA) packet processing of Cisco Access Point Software could allow an unauthenticated, adjacent attacker to modify the IPv6 gateway on an affected device. This vulnerability is due to a logic error in the processing of IPv6 RA packets that are received from wireless clients. An attacker could exploit this vulnerability by associating to a wireless network and sending a series of crafted IPv6 RA packets. A successful exploit could allow the attacker to temporarily change the IPv6 gateway of an affected device. This could also lead to intermittent packet loss for any wireless clients that are associated with the affected device.
Multiple vulnerabilities exist in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Small Business 220 Series Smart Switches. An unauthenticated, adjacent attacker could perform the following: Execute code on the affected device or cause it to reload unexpectedly Cause LLDP database corruption on the affected device For more information about these vulnerabilities, see the Details section of this advisory. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). Cisco has released firmware updates that address these vulnerabilities.
A vulnerability in the Device Analytics action frame processing of Cisco Wireless Access Point (AP) Software could allow an unauthenticated, adjacent attacker to inject wireless 802.11 action frames with arbitrary information. This vulnerability is due to insufficient verification checks of incoming 802.11 action frames. An attacker could exploit this vulnerability by sending 802.11 Device Analytics action frames with arbitrary parameters. A successful exploit could allow the attacker to inject Device Analytics action frames with arbitrary information, which could modify the Device Analytics data of valid wireless clients that are connected to the same wireless controller.
A vulnerability in the web-based user interface (web UI) of Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to bypass access control restrictions on an affected device. The vulnerability is due to the presence of a proxy service at a specific endpoint of the web UI. An attacker could exploit this vulnerability by connecting to the proxy service. An exploit could allow the attacker to bypass access restrictions on the network by proxying their access request through the management network of the affected device. As the proxy is reached over the management virtual routing and forwarding (VRF), this could reduce the effectiveness of the bypass.
The web interface in Cisco FireSIGHT Management Center 5.3.1.4 allows remote attackers to delete arbitrary system policies via modified parameters in a POST request, aka Bug ID CSCuu25390.
Cisco IOS 15.2(04)M6 and 15.4(03)S lets physical-interface ACLs supersede tunnel-interface ACLs, which allows remote attackers to bypass intended network-traffic restrictions in opportunistic circumstances by using a tunnel, aka Bug ID CSCur01042.
A vulnerability in the fabric infrastructure file system access control of Cisco Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) mode could allow an authenticated, local attacker to read arbitrary files on an affected system. This vulnerability is due to improper access control. An attacker with Administrator privileges could exploit this vulnerability by executing a specific vulnerable command on an affected device. A successful exploit could allow the attacker to read arbitrary files on the file system of the affected device.
Cisco Unified Web and E-Mail Interaction Manager 9.0(2) improperly performs authorization, which allows remote authenticated users to remove default messaging-queue system folders via unspecified vectors, aka Bug ID CSCuo89046.
A vulnerability in the IPv6 traffic processing of Cisco IOS XR Software and Cisco NX-OS Software for certain Cisco devices could allow an unauthenticated, remote attacker to bypass an IPv6 access control list (ACL) that is configured for an interface of an affected device. The vulnerability is due to improper processing of IPv6 traffic that is sent through an affected device. An attacker could exploit this vulnerability by sending crafted IPv6 packets that traverse the affected device. A successful exploit could allow the attacker to access resources that would typically be protected by the interface ACL.
Cisco Unified Web and E-Mail Interaction Manager 9.0(2) and 11.0(1) improperly performs authorization, which allows remote authenticated users to read or write to stored data via unspecified vectors, aka Bug ID CSCuo89056.
Cisco Virtual TelePresence Server Software does not properly restrict use of the serial port, which allows local users to execute arbitrary OS commands as root by leveraging vSphere controller administrative privileges, aka Bug ID CSCus61123.
The failover ipsec implementation in Cisco Adaptive Security Appliance (ASA) Software 9.1 before 9.1(6), 9.2 before 9.2(3.3), and 9.3 before 9.3(3) does not properly validate failover communication messages, which allows remote attackers to reconfigure an ASA device, and consequently obtain administrative control, by sending crafted UDP packets over the local network to the failover interface, aka Bug ID CSCur21069.
Cisco ASR 9000 devices with software 5.3.0.BASE do not recognize that certain ACL entries have a single-host constraint, which allows remote attackers to bypass intended network-resource access restrictions by using an address that was not supposed to have been allowed, aka Bug ID CSCur28806.
The Management Interface on Cisco Content Services Switch (CSS) 11500 devices 8.20.4.02 and earlier allows remote attackers to bypass intended restrictions on local-network device access via crafted SSH packets, aka Bug ID CSCut14855.
A vulnerability with the access control list (ACL) management within a stacked switch configuration of Cisco Business 250 Series Smart Switches and Business 350 Series Managed Switches could allow an unauthenticated, remote attacker to bypass protection offered by a configured ACL on an affected device. This vulnerability is due to incorrect processing of ACLs on a stacked configuration when either the primary or backup switches experience a full stack reload or power cycle. An attacker could exploit this vulnerability by sending crafted traffic through an affected device. A successful exploit could allow the attacker to bypass configured ACLs, causing traffic to be dropped or forwarded in an unexpected manner. The attacker does not have control over the conditions that result in the device being in the vulnerable state. Note: In the vulnerable state, the ACL would be correctly applied on the primary devices but could be incorrectly applied to the backup devices.
A vulnerability in Cisco Nexus Dashboard could allow an authenticated, remote attacker to learn cluster deployment information on an affected device. This vulnerability is due to improper access controls on a specific API endpoint. An attacker could exploit this vulnerability by sending queries to the API endpoint. A successful exploit could allow an attacker to access metrics and information about devices in the Nexus Dashboard cluster.
A vulnerability in the implementation of the Simple Network Management Protocol (SNMP) IPv4 access control list (ACL) feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to perform SNMP polling of an affected device, even if it is configured to deny SNMP traffic. This vulnerability exists because Cisco IOS Software and Cisco IOS XE Software do not support extended IPv4 ACLs for SNMP, but they do allow administrators to configure extended named IPv4 ACLs that are attached to the SNMP server configuration without a warning message. This can result in no ACL being applied to the SNMP listening process. An attacker could exploit this vulnerability by performing SNMP polling of an affected device. A successful exploit could allow the attacker to perform SNMP operations that should be denied. The attacker has no control of the SNMP ACL configuration and would still need a valid SNMP version 2c (SNMPv2c) community string or SNMP version 3 (SNMPv3) user credentials. SNMP with IPv6 ACL configurations is not affected. For more information, see the section of this advisory.
A vulnerability in the access control list (ACL) processing on Pseudowire interfaces in the ingress direction of Cisco IOS XR Software could allow an unauthenticated, remote attacker to bypass a configured ACL. This vulnerability is due to improper assignment of lookup keys to internal interface contexts. An attacker could exploit this vulnerability by attempting to send traffic through an affected device. A successful exploit could allow the attacker to access resources behind the affected device that were supposed to be protected by a configured ACL.
A vulnerability in the access control list (ACL) programming for port channel subinterfaces of Cisco Nexus 3000 and 9000 Series Switches in standalone NX-OS mode could allow an unauthenticated, remote attacker to send traffic that should be blocked through an affected device. This vulnerability is due to incorrect hardware programming that occurs when configuration changes are made to port channel member ports. An attacker could exploit this vulnerability by attempting to send traffic through an affected device. A successful exploit could allow the attacker to access network resources that should be protected by an ACL that was applied on port channel subinterfaces.
A vulnerability in the access control list (ACL) processing on MPLS interfaces in the ingress direction of Cisco IOS XR Software could allow an unauthenticated, remote attacker to bypass a configured ACL. This vulnerability is due to improper assignment of lookup keys to internal interface contexts. An attacker could exploit this vulnerability by attempting to send traffic through an affected device. A successful exploit could allow the attacker to access resources behind the affected device that were supposed to be protected by a configured ACL.
A vulnerability in the CLI of Cisco IOS XR Software could allow an authenticated, local attacker to read any file in the file system of the underlying Linux operating system. The attacker must have valid credentials on the affected device. This vulnerability is due to incorrect validation of the arguments that are passed to a specific CLI command. An attacker could exploit this vulnerability by logging in to an affected device with low-privileged credentials and using the affected command. A successful exploit could allow the attacker access files in read-only mode on the Linux file system.
A vulnerability in the tenant security implementation of Cisco Nexus Dashboard Orchestrator (NDO) could allow an authenticated, remote attacker to modify or delete tenant templates on an affected system. This vulnerability is due to improper access controls within tenant security. An attacker who is using a valid user account with write privileges and either a Site Manager or Tenant Manager role could exploit this vulnerability. A successful exploit could allow the attacker to modify or delete tenant templates under non-associated tenants, which could disrupt network traffic.
A vulnerability in the access control list (ACL) programming of Cisco IOS Software running on Cisco Industrial Ethernet 4000, 4010, and 5000 Series Switches could allow an unauthenticated, remote attacker to bypass a configured ACL. This vulnerability is due to the incorrect handling of IPv4 ACLs on switched virtual interfaces when an administrator enables and disables Resilient Ethernet Protocol (REP). An attacker could exploit this vulnerability by attempting to send traffic through an affected device. A successful exploit could allow the attacker to bypass an ACL on the affected device.
A vulnerability in the file policy feature that is used to inspect encrypted archive files of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass a configured file policy to block an encrypted archive file. This vulnerability exists because of a logic error when a specific class of encrypted archive files is inspected. An attacker could exploit this vulnerability by sending a crafted, encrypted archive file through the affected device. A successful exploit could allow the attacker to send an encrypted archive file, which could contain malware and should have been blocked and dropped at the Cisco FTD device.
A vulnerability in the bootloader of Cisco NX-OS Software could allow an unauthenticated attacker with physical access to an affected device, or an authenticated, local attacker with administrative credentials, to bypass NX-OS image signature verification. This vulnerability is due to insecure bootloader settings. An attacker could exploit this vulnerability by executing a series of bootloader commands. A successful exploit could allow the attacker to bypass NX-OS image signature verification and load unverified software.
A vulnerability in the Live Data server of Cisco Unified Intelligence Center could allow an unauthenticated, local attacker to read and modify data in a repository that belongs to an internal service on an affected device. This vulnerability is due to insufficient access control implementations on cluster configuration CLI requests. An attacker could exploit this vulnerability by sending a cluster configuration CLI request to specific directories on an affected device. A successful exploit could allow the attacker to read and modify data that is handled by an internal service on the affected device.
Cisco TelePresence T, TelePresence TE, and TelePresence TC before 7.1 do not properly implement access control, which allows remote attackers to obtain root privileges by sending packets on the local network and allows physically proximate attackers to obtain root privileges via unspecified vectors, aka Bug ID CSCub67651.
A vulnerability in the TCP Intercept functionality of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass configured Access Control Policies (including Geolocation) and Service Polices on an affected system. The vulnerability exists because TCP Intercept is invoked when the embryonic connection limit is reached, which can cause the underlying detection engine to process the packet incorrectly. An attacker could exploit this vulnerability by sending a crafted stream of traffic that matches a policy on which TCP Intercept is configured. A successful exploit could allow the attacker to match on an incorrect policy, which could allow the traffic to be forwarded when it should be dropped. In addition, the traffic could incorrectly be dropped.
vulnerability within the Multimedia Viewer feature of Cisco Webex Meetings could allow an authenticated, remote attacker to bypass security protections. The vulnerability is due to missing security warning dialog boxes when a room host views shared multimedia files. An authenticated, remote attacker could exploit this vulnerability by using the host role to share files within the Multimedia sharing feature and convincing a former room host to view that file. A warning dialog normally appears cautioning users before the file is displayed; however, the former host would not see that warning dialog, and any shared multimedia would be rendered within the user's browser. The attacker could leverage this behavior to conduct additional attacks by including malicious files within a targeted room host's browser window.
A vulnerability in the Traversal Using Relays around NAT (TURN) server component of Cisco Expressway software could allow an unauthenticated, remote attacker to bypass security controls and send network traffic to restricted destinations. The vulnerability is due to improper validation of specific connection information by the TURN server within the affected software. An attacker could exploit this issue by sending specially crafted network traffic to the affected software. A successful exploit could allow the attacker to send traffic through the affected software to destinations beyond the application, possibly allowing the attacker to gain unauthorized network access.
A vulnerability in the support tunnel feature of Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, local attacker to access the shell of an affected device even though expert mode is disabled. The vulnerability is due to improper configuration of the support tunnel feature. An attacker could exploit this vulnerability by enabling the support tunnel, setting a key, and deriving the tunnel password. A successful exploit could allow the attacker to run any system command with root access on an affected device.
A vulnerability in the web application of Cisco Smart Software Manager On-Prem (SSM On-Prem) could allow an unauthenticated, remote attacker to create arbitrary user accounts. The vulnerability is due to the lack of authorization controls in the web application. An attacker could exploit this vulnerability by sending a crafted HTTP request to an affected device. A successful exploit could allow the attacker to add user accounts to the configuration of an affected device. These accounts would not be administrator or operator accounts.
A vulnerability in the user management functionality of Cisco IoT Field Network Director (FND) could allow an authenticated, remote attacker to manage user information for users in different domains on an affected system. The vulnerability is due to improper domain access control. An attacker could exploit this vulnerability by manipulating JSON payloads to target different domains on an affected system. A successful exploit could allow the attacker to manage user information for users in different domains on an affected system.
Cisco Webex Business Suite before 39.1.0 contains a vulnerability that could allow an unauthenticated, remote attacker to affect the integrity of the application. The vulnerability is due to improper validation of host header values. An attacker with a privileged network position, either a man-in-the-middle or by intercepting wireless network traffic, could exploit this vulnerability to manipulate header values sent by a client to the affected application. The attacker could cause the application to use input from the header to redirect a user from the Cisco Webex Meetings Online site to an arbitrary site of the attacker's choosing.
A vulnerability in the fabric infrastructure VLAN connection establishment of the Cisco Nexus 9000 Series Application Centric Infrastructure (ACI) Mode Switch Software could allow an unauthenticated, adjacent attacker to bypass security validations and connect an unauthorized server to the infrastructure VLAN. The vulnerability is due to insufficient security requirements during the Link Layer Discovery Protocol (LLDP) setup phase of the infrastructure VLAN. An attacker could exploit this vulnerability by sending a malicious LLDP packet on the adjacent subnet to the Cisco Nexus 9000 Series Switch in ACI mode. A successful exploit could allow the attacker to connect an unauthorized server to the infrastructure VLAN, which is highly privileged. With a connection to the infrastructure VLAN, the attacker can make unauthorized connections to Cisco Application Policy Infrastructure Controller (APIC) services or join other host endpoints.
A vulnerability in the management interface of Cisco Application Policy Infrastructure Controller (APIC) software could allow an unauthenticated, adjacent attacker to gain unauthorized access on an affected device. The vulnerability is due to a lack of proper access control mechanisms for IPv6 link-local connectivity imposed on the management interface of an affected device. An attacker on the same physical network could exploit this vulnerability by attempting to connect to the IPv6 link-local address on the affected device. A successful exploit could allow the attacker to bypass default access control restrictions on an affected device. Cisco Application Policy Infrastructure Controller (APIC) devices running versions prior to 4.2(0.21c) are affected.
A vulnerability in access control list (ACL) functionality of the Gigabit Ethernet Management interface of Cisco IOS XE Software could allow an unauthenticated, remote attacker to reach the configured IP addresses on the Gigabit Ethernet Management interface. The vulnerability is due to a logic error that was introduced in the Cisco IOS XE Software 16.1.1 Release, which prevents the ACL from working when applied against the management interface. An attacker could exploit this issue by attempting to access the device via the management interface.
A vulnerability in the Graphite service of Cisco HyperFlex software could allow an unauthenticated, remote attacker to retrieve data from the Graphite service. The vulnerability is due to insufficient authentication controls. An attacker could exploit this vulnerability by sending crafted requests to the Graphite service. A successful exploit could allow the attacker to retrieve any statistics from the Graphite service. Versions prior to 3.5(2a) are affected.
A vulnerability in the Simple Object Access Protocol (SOAP) of Cisco TelePresence Management Suite (TMS) software could allow an unauthenticated, remote attacker to gain unauthorized access to an affected device. The vulnerability is due to a lack of proper access and authentication controls on the affected TMS software. An attacker could exploit this vulnerability by gaining access to internal, trusted networks to send crafted SOAP calls to the affected device. If successful, an exploit could allow the attacker to access system management tools. Under normal circumstances, this access should be prohibited.
A vulnerability in certain access control mechanisms for the Secure Shell (SSH) server implementation for Cisco Wireless LAN Controller (WLC) Software could allow an unauthenticated, adjacent attacker to access a CLI instance on an affected device. The vulnerability is due to a lack of proper input- and validation-checking mechanisms for inbound SSH connections on an affected device. An attacker could exploit this vulnerability by attempting to establish an SSH connection to an affected controller. An exploit could allow the attacker to access an affected device's CLI to potentially cause further attacks. This vulnerability has been fixed in version 8.5(140.0).
A vulnerability in the web-based management interface of Session Initiation Protocol (SIP) Software for Cisco IP Phone 8800 Series could allow an unauthenticated, remote attacker to bypass authorization, access critical services, and cause a denial of service (DoS) condition. The vulnerability exists because the software fails to sanitize URLs before it handles requests. An attacker could exploit this vulnerability by submitting a crafted URL. A successful exploit could allow the attacker to gain unauthorized access to critical services and cause a DoS condition. This vulnerability affects Cisco IP Phone 8800 Series products running a SIP Software release prior to 11.0(5) for Wireless IP Phone 8821 and 8821-EX; and 12.5(1)SR1 for the IP Conference Phone 8832 and the rest of the IP Phone 8800 Series. Cisco IP Conference Phone 8831 is not affected.
A vulnerability in the TCP flags inspection feature for access control lists (ACLs) on Cisco ASR 9000 Series Aggregation Services Routers could allow an unauthenticated, remote attacker to bypass protection offered by a configured ACL on an affected device. The vulnerability is due to incorrect processing of the ACL applied to an interface of an affected device when Cisco Express Forwarding load balancing using the 3-tuple hash algorithm is enabled. An attacker could exploit this vulnerability by sending traffic through an affected device that should otherwise be denied by the configured ACL. An exploit could allow the attacker to bypass protection offered by a configured ACL on the affected device. There are workarounds that address this vulnerability. Affected Cisco IOS XR versions are: Cisco IOS XR Software Release 5.1.1 and later till first fixed. First Fixed Releases: 6.5.2 and later, 6.6.1 and later.
A vulnerability in the application environment of Cisco Data Center Network Manager (DCNM) could allow an authenticated, remote attacker to gain unauthorized access to the JBoss Enterprise Application Platform (JBoss EAP) on an affected device. The vulnerability is due to an incorrect configuration of the authentication settings on the JBoss EAP. An attacker could exploit this vulnerability by authenticating with a specific low-privilege account. A successful exploit could allow the attacker to gain unauthorized access to the JBoss EAP, which should be limited to internal system accounts.
A vulnerability in the Cisco SD-WAN Solution could allow an authenticated, adjacent attacker to bypass authentication and have direct unauthorized access to other vSmart containers. The vulnerability is due to an insecure default configuration of the affected system. An attacker could exploit this vulnerability by directly connecting to the exposed services. An exploit could allow the attacker to retrieve and modify critical system files.