in OpenHarmony v5.0.2 and prior versions allow a local attacker cause DOS through out-of-bounds read.
in OpenHarmony v5.0.2 and prior versions allow a local attacker cause DOS through out-of-bounds read.
in OpenHarmony v5.0.2 and prior versions allow a local attacker cause DOS through NULL pointer dereference.
in OpenHarmony v5.0.2 and prior versions allow a local attacker case DOS through missing release of memory.
in OpenHarmony v5.0.2 and prior versions allow a local attacker cause DOS through out-of-bounds read.
in OpenHarmony v5.0.3 and prior versions allow a local attacker cause apps crash through type confusion.
in OpenHarmony v5.0.3 and prior versions allow a local attacker cause apps crash through type confusion.
in OpenHarmony v4.0.0 and prior versions allow a local attacker cause DOS through out-of-bounds read.
in OpenHarmony v4.1.0 and prior versions allow a local attacker cause DOS through out-of-bounds write.
in OpenHarmony v4.1.0 and prior versions allow a local attacker cause DOS through improper input.
in OpenHarmony v4.1.0 and prior versions allow a local attacker cause DOS by memory leak.
in OpenHarmony v4.0.0 and prior versions allow a local attacker cause apps crash through type confusion.
in OpenHarmony v4.0.0 and prior versions allow a local attacker cause heap overflow through integer overflow.
in OpenHarmony v5.0.2 and prior versions allow a local attacker arbitrary code execution in pre-installed apps through integer overflow.
in OpenHarmony v5.0.2 and prior versions allow a local attacker arbitrary code execution in pre-installed apps through integer overflow. This vulnerability can be exploited only in restricted scenarios.
in OpenHarmony v4.0.0 and prior versions allow a local attacker cause heap overflow through integer overflow.
The kernel subsystem function check_permission_for_set_tokenid within OpenHarmony-v3.1.5 and prior versions has an UAF vulnerability which local attackers can exploit this vulnerability to escalate the privilege to root.
in OpenHarmony v5.0.2 and prior versions allow a local attacker arbitrary code execution in pre-installed apps through integer overflow. This vulnerability can be exploited only in restricted scenarios.
Integer overflow vulnerability in tool_operate.c in curl 7.65.2 via a large value as the retry delay. NOTE: many parties report that this has no direct security impact on the curl user; however, it may (in theory) cause a denial of service to associated systems or networks if, for example, --retry-delay is misinterpreted as a value much smaller than what was intended. This is not especially plausible because the overflow only happens if the user was trying to specify that curl should wait weeks (or longer) before trying to recover from a transient error.
In the Linux kernel, the following vulnerability has been resolved: s390/ap: Fix crash in AP internal function modify_bitmap() A system crash like this Failing address: 200000cb7df6f000 TEID: 200000cb7df6f403 Fault in home space mode while using kernel ASCE. AS:00000002d71bc007 R3:00000003fe5b8007 S:000000011a446000 P:000000015660c13d Oops: 0038 ilc:3 [#1] PREEMPT SMP Modules linked in: mlx5_ib ... CPU: 8 PID: 7556 Comm: bash Not tainted 6.9.0-rc7 #8 Hardware name: IBM 3931 A01 704 (LPAR) Krnl PSW : 0704e00180000000 0000014b75e7b606 (ap_parse_bitmap_str+0x10e/0x1f8) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3 Krnl GPRS: 0000000000000001 ffffffffffffffc0 0000000000000001 00000048f96b75d3 000000cb00000100 ffffffffffffffff ffffffffffffffff 000000cb7df6fce0 000000cb7df6fce0 00000000ffffffff 000000000000002b 00000048ffffffff 000003ff9b2dbc80 200000cb7df6fcd8 0000014bffffffc0 000000cb7df6fbc8 Krnl Code: 0000014b75e7b5fc: a7840047 brc 8,0000014b75e7b68a 0000014b75e7b600: 18b2 lr %r11,%r2 #0000014b75e7b602: a7f4000a brc 15,0000014b75e7b616 >0000014b75e7b606: eb22d00000e6 laog %r2,%r2,0(%r13) 0000014b75e7b60c: a7680001 lhi %r6,1 0000014b75e7b610: 187b lr %r7,%r11 0000014b75e7b612: 84960021 brxh %r9,%r6,0000014b75e7b654 0000014b75e7b616: 18e9 lr %r14,%r9 Call Trace: [<0000014b75e7b606>] ap_parse_bitmap_str+0x10e/0x1f8 ([<0000014b75e7b5dc>] ap_parse_bitmap_str+0xe4/0x1f8) [<0000014b75e7b758>] apmask_store+0x68/0x140 [<0000014b75679196>] kernfs_fop_write_iter+0x14e/0x1e8 [<0000014b75598524>] vfs_write+0x1b4/0x448 [<0000014b7559894c>] ksys_write+0x74/0x100 [<0000014b7618a440>] __do_syscall+0x268/0x328 [<0000014b761a3558>] system_call+0x70/0x98 INFO: lockdep is turned off. Last Breaking-Event-Address: [<0000014b75e7b636>] ap_parse_bitmap_str+0x13e/0x1f8 Kernel panic - not syncing: Fatal exception: panic_on_oops occured when /sys/bus/ap/a[pq]mask was updated with a relative mask value (like +0x10-0x12,+60,-90) with one of the numeric values exceeding INT_MAX. The fix is simple: use unsigned long values for the internal variables. The correct checks are already in place in the function but a simple int for the internal variables was used with the possibility to overflow.
Redis is an in-memory database that persists on disk. Authenticated users issuing specially crafted `SRANDMEMBER`, `ZRANDMEMBER`, and `HRANDFIELD` commands can trigger an integer overflow, resulting in a runtime assertion and termination of the Redis server process. This problem affects all Redis versions. Patches were released in Redis version(s) 6.0.18, 6.2.11 and 7.0.9.
Redis is an in-memory database that persists on disk. Authenticated users can issue a `HRANDFIELD` or `ZRANDMEMBER` command with specially crafted arguments to trigger a denial-of-service by crashing Redis with an assertion failure. This problem affects Redis versions 6.2 or newer up to but not including 6.2.9 as well as versions 7.0 up to but not including 7.0.8. Users are advised to upgrade. There are no known workarounds for this vulnerability.
In the Linux kernel, the following vulnerability has been resolved: io_uring/net: fix overflow check in io_recvmsg_mshot_prep() The "controllen" variable is type size_t (unsigned long). Casting it to int could lead to an integer underflow. The check_add_overflow() function considers the type of the destination which is type int. If we add two positive values and the result cannot fit in an integer then that's counted as an overflow. However, if we cast "controllen" to an int and it turns negative, then negative values *can* fit into an int type so there is no overflow. Good: 100 + (unsigned long)-4 = 96 <-- overflow Bad: 100 + (int)-4 = 96 <-- no overflow I deleted the cast of the sizeof() as well. That's not a bug but the cast is unnecessary.
Integer overflow in some Intel(R) Server Board BMC firmware before version 2.90 may allow a privileged user to enable denial of service via local access.
Integer overflow in some Intel(R) Aptio* V UEFI Firmware Integrator Tools may allow an authenticated user to potentially enable denial of service via local access.
A vulnerability within the Avira network protection feature allowed an attacker with local execution rights to cause an overflow. This could corrupt the data on the heap and lead to a denial-of-service situation. Issue was fixed with Endpointprotection.exe version 1.0.2303.633
A memory leak flaw and potential divide by zero and Integer overflow was found in the Linux kernel V4L2 and vivid test code functionality. This issue occurs when a user triggers ioctls, such as VIDIOC_S_DV_TIMINGS ioctl. This could allow a local user to crash the system if vivid test code enabled.
In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix signed integer overflow in __ip6_append_data Resurrect ubsan overflow checks and ubsan report this warning, fix it by change the variable [length] type to size_t. UBSAN: signed-integer-overflow in net/ipv6/ip6_output.c:1489:19 2147479552 + 8567 cannot be represented in type 'int' CPU: 0 PID: 253 Comm: err Not tainted 5.16.0+ #1 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x214/0x230 show_stack+0x30/0x78 dump_stack_lvl+0xf8/0x118 dump_stack+0x18/0x30 ubsan_epilogue+0x18/0x60 handle_overflow+0xd0/0xf0 __ubsan_handle_add_overflow+0x34/0x44 __ip6_append_data.isra.48+0x1598/0x1688 ip6_append_data+0x128/0x260 udpv6_sendmsg+0x680/0xdd0 inet6_sendmsg+0x54/0x90 sock_sendmsg+0x70/0x88 ____sys_sendmsg+0xe8/0x368 ___sys_sendmsg+0x98/0xe0 __sys_sendmmsg+0xf4/0x3b8 __arm64_sys_sendmmsg+0x34/0x48 invoke_syscall+0x64/0x160 el0_svc_common.constprop.4+0x124/0x300 do_el0_svc+0x44/0xc8 el0_svc+0x3c/0x1e8 el0t_64_sync_handler+0x88/0xb0 el0t_64_sync+0x16c/0x170 Changes since v1: -Change the variable [length] type to unsigned, as Eric Dumazet suggested. Changes since v2: -Don't change exthdrlen type in ip6_make_skb, as Paolo Abeni suggested. Changes since v3: -Don't change ulen type in udpv6_sendmsg and l2tp_ip6_sendmsg, as Jakub Kicinski suggested.
In the Linux kernel, the following vulnerability has been resolved: i2c: designware: use casting of u64 in clock multiplication to avoid overflow In functions i2c_dw_scl_lcnt() and i2c_dw_scl_hcnt() may have overflow by depending on the values of the given parameters including the ic_clk. For example in our use case where ic_clk is larger than one million, multiplication of ic_clk * 4700 will result in 32 bit overflow. Add cast of u64 to the calculation to avoid multiplication overflow, and use the corresponding define for divide.
In the Linux kernel, the following vulnerability has been resolved: cpufreq: CPPC: Add u64 casts to avoid overflowing The fields of the _CPC object are unsigned 32-bits values. To avoid overflows while using _CPC's values, add 'u64' casts.
In the Linux kernel, the following vulnerability has been resolved: perf/x86/amd: fix potential integer overflow on shift of a int The left shift of int 32 bit integer constant 1 is evaluated using 32 bit arithmetic and then passed as a 64 bit function argument. In the case where i is 32 or more this can lead to an overflow. Avoid this by shifting using the BIT_ULL macro instead.
In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix signed integer overflow in l2tp_ip6_sendmsg When len >= INT_MAX - transhdrlen, ulen = len + transhdrlen will be overflow. To fix, we can follow what udpv6 does and subtract the transhdrlen from the max.
In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scmi: Fix list protocols enumeration in the base protocol While enumerating protocols implemented by the SCMI platform using BASE_DISCOVER_LIST_PROTOCOLS, the number of returned protocols is currently validated in an improper way since the check employs a sum between unsigned integers that could overflow and cause the check itself to be silently bypassed if the returned value 'loop_num_ret' is big enough. Fix the validation avoiding the addition.
In the Linux kernel, the following vulnerability has been resolved: media: v4l2-dv-timings.c: fix too strict blanking sanity checks Sanity checks were added to verify the v4l2_bt_timings blanking fields in order to avoid integer overflows when userspace passes weird values. But that assumed that userspace would correctly fill in the front porch, backporch and sync values, but sometimes all you know is the total blanking, which is then assigned to just one of these fields. And that can fail with these checks. So instead set a maximum for the total horizontal and vertical blanking and check that each field remains below that. That is still sufficient to avoid integer overflows, but it also allows for more flexibility in how userspace fills in these fields.
In the Linux kernel, the following vulnerability has been resolved: watchdog: rzg2l_wdt: Fix 32bit overflow issue The value of timer_cycle_us can be 0 due to 32bit overflow. For eg:- If we assign the counter value "0xfff" for computing maxval. This patch fixes this issue by appending ULL to 1024, so that it is promoted to 64bit. This patch also fixes the warning message, 'watchdog: Invalid min and max timeout values, resetting to 0!'.
In the Linux kernel, the following vulnerability has been resolved: CDC-NCM: avoid overflow in sanity checking A broken device may give an extreme offset like 0xFFF0 and a reasonable length for a fragment. In the sanity check as formulated now, this will create an integer overflow, defeating the sanity check. Both offset and offset + len need to be checked in such a manner that no overflow can occur. And those quantities should be unsigned.
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix u8 overflow By keep sending L2CAP_CONF_REQ packets, chan->num_conf_rsp increases multiple times and eventually it will wrap around the maximum number (i.e., 255). This patch prevents this by adding a boundary check with L2CAP_MAX_CONF_RSP Btmon log: Bluetooth monitor ver 5.64 = Note: Linux version 6.1.0-rc2 (x86_64) 0.264594 = Note: Bluetooth subsystem version 2.22 0.264636 @ MGMT Open: btmon (privileged) version 1.22 {0x0001} 0.272191 = New Index: 00:00:00:00:00:00 (Primary,Virtual,hci0) [hci0] 13.877604 @ RAW Open: 9496 (privileged) version 2.22 {0x0002} 13.890741 = Open Index: 00:00:00:00:00:00 [hci0] 13.900426 (...) > ACL Data RX: Handle 200 flags 0x00 dlen 1033 #32 [hci0] 14.273106 invalid packet size (12 != 1033) 08 00 01 00 02 01 04 00 01 10 ff ff ............ > ACL Data RX: Handle 200 flags 0x00 dlen 1547 #33 [hci0] 14.273561 invalid packet size (14 != 1547) 0a 00 01 00 04 01 06 00 40 00 00 00 00 00 ........@..... > ACL Data RX: Handle 200 flags 0x00 dlen 2061 #34 [hci0] 14.274390 invalid packet size (16 != 2061) 0c 00 01 00 04 01 08 00 40 00 00 00 00 00 00 04 ........@....... > ACL Data RX: Handle 200 flags 0x00 dlen 2061 #35 [hci0] 14.274932 invalid packet size (16 != 2061) 0c 00 01 00 04 01 08 00 40 00 00 00 07 00 03 00 ........@....... = bluetoothd: Bluetooth daemon 5.43 14.401828 > ACL Data RX: Handle 200 flags 0x00 dlen 1033 #36 [hci0] 14.275753 invalid packet size (12 != 1033) 08 00 01 00 04 01 04 00 40 00 00 00 ........@...
In the Linux kernel, the following vulnerability has been resolved: NFSD: prevent integer overflow on 32 bit systems On a 32 bit system, the "len * sizeof(*p)" operation can have an integer overflow.
In the Linux kernel, the following vulnerability has been resolved: gpio: gpio-xilinx: Fix integer overflow Current implementation is not able to configure more than 32 pins due to incorrect data type. So type casting with unsigned long to avoid it.
In the Linux kernel, the following vulnerability has been resolved: RDMA/hfi1: Fix potential integer multiplication overflow errors When multiplying of different types, an overflow is possible even when storing the result in a larger type. This is because the conversion is done after the multiplication. So arithmetic overflow and thus in incorrect value is possible. Correct an instance of this in the inter packet delay calculation. Fix by ensuring one of the operands is u64 which will promote the other to u64 as well ensuring no overflow.
In wlan driver, there is a possible missing params check. This could lead to local denial of service in wlan services.
In wlan driver, there is a possible missing params check. This could lead to local denial of service in wlan services.
protobuf-c before 1.4.1 has an unsigned integer overflow in parse_required_member.
An issue in Academy Software Foundation openexr v.3.2.3 and before allows a local attacker to cause a denial of service (DoS) via the convert function of exrmultipart.cpp.
In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_limit: reject configurations that cause integer overflow Reject bogus configs where internal token counter wraps around. This only occurs with very very large requests, such as 17gbyte/s. Its better to reject this rather than having incorrect ratelimit.
In wlan driver, there is a possible missing bounds check. This could lead to local denial of service in wlan services.
In wlan driver, there is a possible missing bounds check. This could lead to local denial of service in wlan services.
In wlan driver, there is a possible missing bounds check, This could lead to local denial of service in wlan services.
In wlan driver, there is a possible missing bounds check, This could lead to local denial of service in wlan services.
In wlan driver, there is a possible missing bounds check, This could lead to local denial of service in wlan services.