An out-of-bounds read in Organization Specific TLV was found in various versions of OpenvSwitch.
An exploitable heap out-of-bounds read vulnerability exists in the way CoTURN 4.5.1.1 web server parses POST requests. A specially crafted HTTP POST request can lead to information leaks and other misbehavior. An attacker needs to send an HTTPS request to trigger this vulnerability.
An out-of-bounds access vulnerability in the loading of ExecuTorch models can cause the runtime to crash and potentially result in code execution or other undesirable effects. This issue affects ExecuTorch prior to commit b6b7a16df5e7852d976d8c34c8a7e9a1b6f7d005.
u'Buffer over-read issue in Bluetooth peripheral firmware due to lack of check for invalid opcode and length of opcode received from central device(This CVE is equivalent to Link Layer Length Overfow issue (CVE-2019-16336,CVE-2019-17519) and Silent Length Overflow issue(CVE-2019-17518) mentioned in sweyntooth paper)' in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music in APQ8053, APQ8076, AR9344, Bitra, Kamorta, MDM9206, MDM9207C, MDM9607, MSM8905, MSM8917, MSM8937, MSM8940, MSM8953, Nicobar, QCA6174A, QCA9377, QCM2150, QCM6125, QCS404, QCS405, QCS605, QCS610, QM215, Rennell, SC8180X, SDM429, SDM439, SDM450, SDM630, SDM632, SDM636, SDM660, SDM670, SDM710, SDM845, SDX20, SDX24, SM6150, SM7150, SM8150, SXR1130
A code execution vulnerability exists in the Nef polygon-parsing functionality of CGAL libcgal CGAL-5.1.1 in Nef_S2/SNC_io_parser.h SNC_io_parser::read_sface() sfh->volume() OOB read. A specially crafted malformed file can lead to an out-of-bounds read and type confusion, which could lead to code execution. An attacker can provide malicious input to trigger this vulnerability.
A code execution vulnerability exists in the Nef polygon-parsing functionality of CGAL libcgal CGAL-5.1.1. An oob read vulnerability exists in Nef_2/PM_io_parser.h PM_io_parser::read_vertex() Face_of[] OOB read. An attacker can provide malicious input to trigger this vulnerability.
A code execution vulnerability exists in the Nef polygon-parsing functionality of CGAL libcgal CGAL-5.1.1. An oob read vulnerability exists in Nef_S2/SNC_io_parser.h SNC_io_parser::read_sloop() slh->twin() An attacker can provide malicious input to trigger this vulnerability.
An issue was discovered in Noise-Java through 2020-08-27. AESGCMFallbackCipherState.encryptWithAd() allows out-of-bounds access.
An issue was discovered in the DNS implementation in Ethernut in Nut/OS 5.1. The length byte of a domain name in a DNS query/response is not checked, and is used for internal memory operations. This may lead to successful Denial-of-Service, and possibly Remote Code Execution.
Buffer overflow in POP servers based on BSD/Qualcomm's qpopper allows remote attackers to gain root access using a long PASS command.
An issue was discovered in the DNS implementation in Ethernut in Nut/OS 5.1. There is no check on whether a domain name has '\0' termination. This may lead to successful Denial-of-Service, and possibly Remote Code Execution.
An issue was discovered in Noise-Java through 2020-08-27. AESGCMOnCtrCipherState.encryptWithAd() allows out-of-bounds access.
The DNS feature in InterNiche NicheStack TCP/IP 4.0.1 is affected by: Buffer Overflow. The impact is: execute arbitrary code (remote). The component is: DNS response processing functions: dns_upcall(), getoffset(), dnc_set_answer(). The attack vector is: a specific DNS response packet. The code does not check the "response data length" field of individual DNS answers, which may cause out-of-bounds read/write operations, leading to Information leak, Denial-or-Service, or Remote Code Execution, depending on the context.
An issue was discovered in the DNS implementation in Ethernut in Nut/OS 5.1. The number of DNS queries/responses (set in a DNS header) is not checked against the data present. This may lead to successful Denial-of-Service, and possibly Remote Code Execution.
An issue was discovered in the Linux kernel before 6.3.8. fs/smb/server/smb2pdu.c in ksmbd has an integer underflow and out-of-bounds read in deassemble_neg_contexts.
An issue was discovered in Noise-Java through 2020-08-27. ChaChaPolyCipherState.encryptWithAd() allows out-of-bounds access.
Out-of-bounds read in IPv6 subsystem in Intel(R) AMT and Intel(R) ISM versions before 11.8.77, 11.12.77, 11.22.77 and 12.0.64 may allow an unauthenticated user to potentially enable escalation of privilege via network access.
spimsimulator spim v9.1.24 and before is vulnerable to Buffer Overflow in READ_STRING_SYSCALL.
A permissions issue was addressed with additional restrictions. This issue is fixed in macOS Sequoia 15.4. An app may be able to read files outside of its sandbox.
An out-of-bounds read issue existed that led to the disclosure of kernel memory. This was addressed with improved input validation. This issue is fixed in macOS Mojave 10.14.5, Security Update 2019-003 High Sierra, Security Update 2019-003 Sierra, watchOS 5.2, macOS Mojave 10.14.4, Security Update 2019-002 High Sierra, Security Update 2019-002 Sierra, iOS 12.2. A remote attacker may be able to leak memory.
SQLite3 from 3.6.0 to and including 3.27.2 is vulnerable to heap out-of-bound read in the rtreenode() function when handling invalid rtree tables.
An out-of-bounds read was addressed with improved input validation. This issue is fixed in macOS Catalina 10.15, iOS 13, iCloud for Windows 7.14, iCloud for Windows 10.7, tvOS 13, macOS Catalina 10.15.1, Security Update 2019-001, and Security Update 2019-006, watchOS 6, iTunes 12.10.1 for Windows. A remote attacker may be able to cause unexpected application termination or arbitrary code execution.
An out-of-bounds read was addressed with improved input validation.
In the GNU C Library (aka glibc or libc6) through 2.29, proceed_next_node in posix/regexec.c has a heap-based buffer over-read via an attempted case-insensitive regular-expression match.
An out-of-bounds read was addressed with improved input validation. This issue is fixed in AirPort Base Station Firmware Update 7.8.1, AirPort Base Station Firmware Update 7.9.1. A remote attacker may be able to leak memory.
CryptoLib provides a software-only solution using the CCSDS Space Data Link Security Protocol - Extended Procedures (SDLS-EP) to secure communications between a spacecraft running the core Flight System (cFS) and a ground station. A critical heap buffer overflow vulnerability was identified in the `Crypto_TC_Prep_AAD` function of CryptoLib versions 1.3.3 and prior. This vulnerability allows an attacker to trigger a Denial of Service (DoS) or potentially execute arbitrary code (RCE) by providing a maliciously crafted telecommand (TC) frame that causes an unsigned integer underflow. The vulnerability lies in the function `Crypto_TC_Prep_AAD`, specifically during the computation of `tc_mac_start_index`. The affected code incorrectly calculates the MAC start index without ensuring it remains within the bounds of the `ingest` buffer. When `tc_mac_start_index` underflows due to an incorrect length calculation, the function attempts to access an out-of-bounds memory location, leading to a segmentation fault. The vulnerability is still present in the repository as of commit `d3cc420ace96d02a5b7e83d88cbd2e48010d5723`.
A malformed DLC can trigger Memory Corruption in SNPE library due to out of bounds read, such as by loading an untrusted model (e.g. from a remote source).
In FreeBSD 12.0-STABLE before r350648, 12.0-RELEASE before 12.0-RELEASE-p9, 11.3-STABLE before r350650, 11.3-RELEASE before 11.3-RELEASE-p2, and 11.2-RELEASE before 11.2-RELEASE-p13, the ICMPv6 input path incorrectly handles cases where an MLDv2 listener query packet is internally fragmented across multiple mbufs. A remote attacker may be able to cause an out-of-bounds read or write that may cause the kernel to attempt to access an unmapped page and subsequently panic.
DexLoader function get_stringidx_fromdex() in Redex prior to commit 3b44c64 can load an out of bound address when loading the string index table, potentially allowing remote code execution during processing of a 3rd party Android APK file.
In ProtocolMiscLceIndAdapter::GetConfLevel() of protocolmiscadapter.cpp, there is a possible out of bounds read due to a missing bounds check. This could lead to remote information disclosure with baseband firmware compromise required. User interaction is not needed for exploitation.
In FindSharedFunctionInfo of objects.cc, there is a possible out of bounds read due to a mistake in AST traversal. This could lead to remote code execution in the pacprocessor with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android Versions: Android-8.1, Android-9 Android ID: A-138442295
SNDCP module may access array out side its boundary when it receives malformed XID message. in Snapdragon Auto, Snapdragon Compute, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables in APQ8009, APQ8017, APQ8053, APQ8096AU, APQ8098, MDM9150, MDM9205, MDM9206, MDM9607, MDM9615, MDM9625, MDM9635M, MDM9640, MDM9650, MDM9655, MSM8905, MSM8909, MSM8909W, MSM8917, MSM8920, MSM8937, MSM8939, MSM8940, MSM8953, MSM8976, MSM8996AU, MSM8998, Nicobar, QCM2150, QCS605, QM215, SC8180X, SDA660, SDA845, SDM429, SDM439, SDM450, SDM630, SDM632, SDM636, SDM660, SDM670, SDM710, SDM845, SDM850, SDX20, SDX24, SDX55, SM6150, SM7150, SM8150, SM8250, Snapdragon_High_Med_2016, SXR1130, SXR2130
Possible OOB read issue in P2P action frames while handling WLAN management frame in Snapdragon Auto, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music in APQ8009, APQ8017, APQ8053, APQ8096AU, APQ8098, MDM9206, MDM9207C, MDM9607, MDM9650, MSM8996AU, MSM8998, QCA6174A, QCA6574AU, QCA9377, QCA9379, QCS405, QCS605, SDA660, SDM630, SDM636, SDM660, SDM670, SDM710, SDM845, SDX20, SM6150
Kernel can do a memory read from arbitrary address passed by user during execution of a syscall in Snapdragon Auto, Snapdragon Compute, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Wired Infrastructure and Networking in IPQ8074, MDM9205, MDM9650, QCA8081, QCS605, SD 427, SD 435, SD 450, SD 625, SD 636, SD 665, SD 675, SD 712 / SD 710 / SD 670, SD 730, SD 835, SD 845 / SD 850, SD 855, SD 8CX, SDA660, SDM630, SDM660, SDX20, Snapdragon_High_Med_2016, SXR1130
Improper validation of read and write index of tx and rx fifo`s before calculating pointer can lead to out-of-bound access in Snapdragon Auto, Snapdragon Compute, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables in MDM9150, MDM9206, MDM9607, MDM9640, MDM9650, MSM8909W, MSM8996AU, QCS605, Qualcomm 215, SD 210/SD 212/SD 205, SD 425, SD 427, SD 430, SD 435, SD 439 / SD 429, SD 450, SD 625, SD 632, SD 636, SD 675, SD 712 / SD 710 / SD 670, SD 730, SD 820, SD 820A, SD 835, SD 845 / SD 850, SD 855, SDA660, SDM439, SDM630, SDM660, SDX20, SDX24
An issue was discovered on Samsung mobile devices with N(7.x), O(8.x), and P(9.0) (Broadcom chipsets) software. A heap out-of-bounds access can occur during LE Packet reception in Broadcom Bluetooth. The Samsung ID is SVE-2019-15724 (November 2019).
An out-of-bounds read was addressed with improved bounds checking. This issue is fixed in iOS 15.7.8 and iPadOS 15.7.8, macOS Big Sur 11.7.9, macOS Monterey 12.6.8, macOS Ventura 13.5. An app may be able to execute arbitrary code with kernel privileges.
libESMTP through 1.0.6 mishandles domain copying into a fixed-size buffer in ntlm_build_type_2 in ntlm/ntlmstruct.c, as demonstrated by a stack-based buffer over-read.
The issue was addressed with improved bounds checks. This issue is fixed in macOS Ventura 13.7.5, macOS Sequoia 15.4, macOS Sonoma 14.7.5. An app may be able to disclose kernel memory.
An integer overflow in parse_mqtt in mongoose.c in Cesanta Mongoose 6.16 allows an attacker to achieve remote DoS (infinite loop), or possibly cause an out-of-bounds write, by sending a crafted MQTT protocol packet.
An out-of-bounds read was addressed with improved bounds checking. This issue is fixed in macOS Ventura 13.7.5, macOS Sequoia 15.4, macOS Sonoma 14.7.5. An app may be able to cause unexpected system termination.
An integer overflow in the search_in_range function in regexec.c in Oniguruma 6.x before 6.9.4_rc2 leads to an out-of-bounds read, in which the offset of this read is under the control of an attacker. (This only affects the 32-bit compiled version). Remote attackers can cause a denial-of-service or information disclosure, or possibly have unspecified other impact, via a crafted regular expression.
contrib/pmdb2diag/pmdb2diag.c in Rsyslog v8.1908.0 allows out-of-bounds access because the level length is mishandled.
Libntlm through 1.5 relies on a fixed buffer size for tSmbNtlmAuthRequest, tSmbNtlmAuthChallenge, and tSmbNtlmAuthResponse read and write operations, as demonstrated by a stack-based buffer over-read in buildSmbNtlmAuthRequest in smbutil.c for a crafted NTLM request.
In ProtocolEmbmsGlobalCellIdAdapter::Init() of protocolembmsadapter.cpp, there is a possible out of bounds read due to a missing bounds check. This could lead to remote information disclosure with baseband firmware compromise required. User interaction is not needed for exploitation.
An out-of-bounds read issue was addressed with improved input validation. This issue is fixed in visionOS 2.4, macOS Ventura 13.7.5, tvOS 18.4, iPadOS 17.7.6, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, macOS Sonoma 14.7.5. Playing a malicious audio file may lead to an unexpected app termination.
libsoup from versions 2.65.1 until 2.68.1 have a heap-based buffer over-read because soup_ntlm_parse_challenge() in soup-auth-ntlm.c does not properly check an NTLM message's length before proceeding with a memcpy.
In all versions of ClickHouse before 19.14, an OOB read, OOB write and integer underflow in decompression algorithms can be used to achieve RCE or DoS via native protocol.
An issue was discovered in Suricata 4.1.4. By sending multiple IPv4 packets that have invalid IPv4Options, the function IPV4OptValidateTimestamp in decode-ipv4.c tries to access a memory region that is not allocated. There is a check for o->len < 5 (corresponding to 2 bytes of header and 3 bytes of data). Then, "flag = *(o->data + 3)" places one beyond the 3 bytes, because the code should have been "flag = *(o->data + 1)" instead.
An issue was discovered in the compact_arena crate before 0.4.0 for Rust. Generativity is mishandled, leading to an out-of-bounds write or read.