In the Linux kernel, the following vulnerability has been resolved: drm/xe/client: add missing bo locking in show_meminfo() bo_meminfo() wants to inspect bo state like tt and the ttm resource, however this state can change at any point leading to stuff like NPD and UAF, if the bo lock is not held. Grab the bo lock when calling bo_meminfo(), ensuring we drop any spinlocks first. In the case of object_idr we now also need to hold a ref. v2 (MattB) - Also add xe_bo_assert_held() (cherry picked from commit 4f63d712fa104c3ebefcb289d1e733e86d8698c7)
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: the warning dereferencing obj for nbio_v7_4 if ras_manager obj null, don't print NBIO err data
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix missing cleanup on rollforward recovery error In an error injection test of a routine for mount-time recovery, KASAN found a use-after-free bug. It turned out that if data recovery was performed using partial logs created by dsync writes, but an error occurred before starting the log writer to create a recovered checkpoint, the inodes whose data had been recovered were left in the ns_dirty_files list of the nilfs object and were not freed. Fix this issue by cleaning up inodes that have read the recovery data if the recovery routine fails midway before the log writer starts.
In the Linux kernel, the following vulnerability has been resolved: ksmbd: unset the binding mark of a reused connection Steve French reported null pointer dereference error from sha256 lib. cifs.ko can send session setup requests on reused connection. If reused connection is used for binding session, conn->binding can still remain true and generate_preauth_hash() will not set sess->Preauth_HashValue and it will be NULL. It is used as a material to create an encryption key in ksmbd_gen_smb311_encryptionkey. ->Preauth_HashValue cause null pointer dereference error from crypto_shash_update(). BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 8 PID: 429254 Comm: kworker/8:39 Hardware name: LENOVO 20MAS08500/20MAS08500, BIOS N2CET69W (1.52 ) Workqueue: ksmbd-io handle_ksmbd_work [ksmbd] RIP: 0010:lib_sha256_base_do_update.isra.0+0x11e/0x1d0 [sha256_ssse3] <TASK> ? show_regs+0x6d/0x80 ? __die+0x24/0x80 ? page_fault_oops+0x99/0x1b0 ? do_user_addr_fault+0x2ee/0x6b0 ? exc_page_fault+0x83/0x1b0 ? asm_exc_page_fault+0x27/0x30 ? __pfx_sha256_transform_rorx+0x10/0x10 [sha256_ssse3] ? lib_sha256_base_do_update.isra.0+0x11e/0x1d0 [sha256_ssse3] ? __pfx_sha256_transform_rorx+0x10/0x10 [sha256_ssse3] ? __pfx_sha256_transform_rorx+0x10/0x10 [sha256_ssse3] _sha256_update+0x77/0xa0 [sha256_ssse3] sha256_avx2_update+0x15/0x30 [sha256_ssse3] crypto_shash_update+0x1e/0x40 hmac_update+0x12/0x20 crypto_shash_update+0x1e/0x40 generate_key+0x234/0x380 [ksmbd] generate_smb3encryptionkey+0x40/0x1c0 [ksmbd] ksmbd_gen_smb311_encryptionkey+0x72/0xa0 [ksmbd] ntlm_authenticate.isra.0+0x423/0x5d0 [ksmbd] smb2_sess_setup+0x952/0xaa0 [ksmbd] __process_request+0xa3/0x1d0 [ksmbd] __handle_ksmbd_work+0x1c4/0x2f0 [ksmbd] handle_ksmbd_work+0x2d/0xa0 [ksmbd] process_one_work+0x16c/0x350 worker_thread+0x306/0x440 ? __pfx_worker_thread+0x10/0x10 kthread+0xef/0x120 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x44/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK>
In the Linux kernel, the following vulnerability has been resolved: MIPS: cevt-r4k: Don't call get_c0_compare_int if timer irq is installed This avoids warning: [ 0.118053] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:283 Caused by get_c0_compare_int on secondary CPU. We also skipped saving IRQ number to struct clock_event_device *cd as it's never used by clockevent core, as per comments it's only meant for "non CPU local devices".
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: cmd-db: Map shared memory as WC, not WB Linux does not write into cmd-db region. This region of memory is write protected by XPU. XPU may sometime falsely detect clean cache eviction as "write" into the write protected region leading to secure interrupt which causes an endless loop somewhere in Trust Zone. The only reason it is working right now is because Qualcomm Hypervisor maps the same region as Non-Cacheable memory in Stage 2 translation tables. The issue manifests if we want to use another hypervisor (like Xen or KVM), which does not know anything about those specific mappings. Changing the mapping of cmd-db memory from MEMREMAP_WB to MEMREMAP_WT/WC removes dependency on correct mappings in Stage 2 tables. This patch fixes the issue by updating the mapping to MEMREMAP_WC. I tested this on SA8155P with Xen.
In the Linux kernel, the following vulnerability has been resolved: mm/slub: add check for s->flags in the alloc_tagging_slab_free_hook When enable CONFIG_MEMCG & CONFIG_KFENCE & CONFIG_KMEMLEAK, the following warning always occurs,This is because the following call stack occurred: mem_pool_alloc kmem_cache_alloc_noprof slab_alloc_node kfence_alloc Once the kfence allocation is successful,slab->obj_exts will not be empty, because it has already been assigned a value in kfence_init_pool. Since in the prepare_slab_obj_exts_hook function,we perform a check for s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE),the alloc_tag_add function will not be called as a result.Therefore,ref->ct remains NULL. However,when we call mem_pool_free,since obj_ext is not empty, it eventually leads to the alloc_tag_sub scenario being invoked. This is where the warning occurs. So we should add corresponding checks in the alloc_tagging_slab_free_hook. For __GFP_NO_OBJ_EXT case,I didn't see the specific case where it's using kfence,so I won't add the corresponding check in alloc_tagging_slab_free_hook for now. [ 3.734349] ------------[ cut here ]------------ [ 3.734807] alloc_tag was not set [ 3.735129] WARNING: CPU: 4 PID: 40 at ./include/linux/alloc_tag.h:130 kmem_cache_free+0x444/0x574 [ 3.735866] Modules linked in: autofs4 [ 3.736211] CPU: 4 UID: 0 PID: 40 Comm: ksoftirqd/4 Tainted: G W 6.11.0-rc3-dirty #1 [ 3.736969] Tainted: [W]=WARN [ 3.737258] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 [ 3.737875] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 3.738501] pc : kmem_cache_free+0x444/0x574 [ 3.738951] lr : kmem_cache_free+0x444/0x574 [ 3.739361] sp : ffff80008357bb60 [ 3.739693] x29: ffff80008357bb70 x28: 0000000000000000 x27: 0000000000000000 [ 3.740338] x26: ffff80008207f000 x25: ffff000b2eb2fd60 x24: ffff0000c0005700 [ 3.740982] x23: ffff8000804229e4 x22: ffff800082080000 x21: ffff800081756000 [ 3.741630] x20: fffffd7ff8253360 x19: 00000000000000a8 x18: ffffffffffffffff [ 3.742274] x17: ffff800ab327f000 x16: ffff800083398000 x15: ffff800081756df0 [ 3.742919] x14: 0000000000000000 x13: 205d344320202020 x12: 5b5d373038343337 [ 3.743560] x11: ffff80008357b650 x10: 000000000000005d x9 : 00000000ffffffd0 [ 3.744231] x8 : 7f7f7f7f7f7f7f7f x7 : ffff80008237bad0 x6 : c0000000ffff7fff [ 3.744907] x5 : ffff80008237ba78 x4 : ffff8000820bbad0 x3 : 0000000000000001 [ 3.745580] x2 : 68d66547c09f7800 x1 : 68d66547c09f7800 x0 : 0000000000000000 [ 3.746255] Call trace: [ 3.746530] kmem_cache_free+0x444/0x574 [ 3.746931] mem_pool_free+0x44/0xf4 [ 3.747306] free_object_rcu+0xc8/0xdc [ 3.747693] rcu_do_batch+0x234/0x8a4 [ 3.748075] rcu_core+0x230/0x3e4 [ 3.748424] rcu_core_si+0x14/0x1c [ 3.748780] handle_softirqs+0x134/0x378 [ 3.749189] run_ksoftirqd+0x70/0x9c [ 3.749560] smpboot_thread_fn+0x148/0x22c [ 3.749978] kthread+0x10c/0x118 [ 3.750323] ret_from_fork+0x10/0x20 [ 3.750696] ---[ end trace 0000000000000000 ]---
In the Linux kernel, the following vulnerability has been resolved: userfaultfd: don't BUG_ON() if khugepaged yanks our page table Since khugepaged was changed to allow retracting page tables in file mappings without holding the mmap lock, these BUG_ON()s are wrong - get rid of them. We could also remove the preceding "if (unlikely(...))" block, but then we could reach pte_offset_map_lock() with transhuge pages not just for file mappings but also for anonymous mappings - which would probably be fine but I think is not necessarily expected.
In the Linux kernel, the following vulnerability has been resolved: tcp_bpf: fix return value of tcp_bpf_sendmsg() When we cork messages in psock->cork, the last message triggers the flushing will result in sending a sk_msg larger than the current message size. In this case, in tcp_bpf_send_verdict(), 'copied' becomes negative at least in the following case: 468 case __SK_DROP: 469 default: 470 sk_msg_free_partial(sk, msg, tosend); 471 sk_msg_apply_bytes(psock, tosend); 472 *copied -= (tosend + delta); // <==== HERE 473 return -EACCES; Therefore, it could lead to the following BUG with a proper value of 'copied' (thanks to syzbot). We should not use negative 'copied' as a return value here. ------------[ cut here ]------------ kernel BUG at net/socket.c:733! Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP Modules linked in: CPU: 0 UID: 0 PID: 3265 Comm: syz-executor510 Not tainted 6.11.0-rc3-syzkaller-00060-gd07b43284ab3 #0 Hardware name: linux,dummy-virt (DT) pstate: 61400009 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) pc : sock_sendmsg_nosec net/socket.c:733 [inline] pc : sock_sendmsg_nosec net/socket.c:728 [inline] pc : __sock_sendmsg+0x5c/0x60 net/socket.c:745 lr : sock_sendmsg_nosec net/socket.c:730 [inline] lr : __sock_sendmsg+0x54/0x60 net/socket.c:745 sp : ffff800088ea3b30 x29: ffff800088ea3b30 x28: fbf00000062bc900 x27: 0000000000000000 x26: ffff800088ea3bc0 x25: ffff800088ea3bc0 x24: 0000000000000000 x23: f9f00000048dc000 x22: 0000000000000000 x21: ffff800088ea3d90 x20: f9f00000048dc000 x19: ffff800088ea3d90 x18: 0000000000000001 x17: 0000000000000000 x16: 0000000000000000 x15: 000000002002ffaf x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 x11: 0000000000000000 x10: ffff8000815849c0 x9 : ffff8000815b49c0 x8 : 0000000000000000 x7 : 000000000000003f x6 : 0000000000000000 x5 : 00000000000007e0 x4 : fff07ffffd239000 x3 : fbf00000062bc900 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 00000000fffffdef Call trace: sock_sendmsg_nosec net/socket.c:733 [inline] __sock_sendmsg+0x5c/0x60 net/socket.c:745 ____sys_sendmsg+0x274/0x2ac net/socket.c:2597 ___sys_sendmsg+0xac/0x100 net/socket.c:2651 __sys_sendmsg+0x84/0xe0 net/socket.c:2680 __do_sys_sendmsg net/socket.c:2689 [inline] __se_sys_sendmsg net/socket.c:2687 [inline] __arm64_sys_sendmsg+0x24/0x30 net/socket.c:2687 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x48/0x110 arch/arm64/kernel/syscall.c:49 el0_svc_common.constprop.0+0x40/0xe0 arch/arm64/kernel/syscall.c:132 do_el0_svc+0x1c/0x28 arch/arm64/kernel/syscall.c:151 el0_svc+0x34/0xec arch/arm64/kernel/entry-common.c:712 el0t_64_sync_handler+0x100/0x12c arch/arm64/kernel/entry-common.c:730 el0t_64_sync+0x19c/0x1a0 arch/arm64/kernel/entry.S:598 Code: f9404463 d63f0060 3108441f 54fffe81 (d4210000) ---[ end trace 0000000000000000 ]---
In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: Fix null pointer dereference in trace ucsi_register_altmode checks IS_ERR for the alt pointer and treats NULL as valid. When CONFIG_TYPEC_DP_ALTMODE is not enabled, ucsi_register_displayport returns NULL which causes a NULL pointer dereference in trace. Rather than return NULL, call typec_port_register_altmode to register DisplayPort alternate mode as a non-controllable mode when CONFIG_TYPEC_DP_ALTMODE is not enabled.
In the Linux kernel, the following vulnerability has been resolved: eventfs: Use list_del_rcu() for SRCU protected list variable Chi Zhiling reported: We found a null pointer accessing in tracefs[1], the reason is that the variable 'ei_child' is set to LIST_POISON1, that means the list was removed in eventfs_remove_rec. so when access the ei_child->is_freed, the panic triggered. by the way, the following script can reproduce this panic loop1 (){ while true do echo "p:kp submit_bio" > /sys/kernel/debug/tracing/kprobe_events echo "" > /sys/kernel/debug/tracing/kprobe_events done } loop2 (){ while true do tree /sys/kernel/debug/tracing/events/kprobes/ done } loop1 & loop2 [1]: [ 1147.959632][T17331] Unable to handle kernel paging request at virtual address dead000000000150 [ 1147.968239][T17331] Mem abort info: [ 1147.971739][T17331] ESR = 0x0000000096000004 [ 1147.976172][T17331] EC = 0x25: DABT (current EL), IL = 32 bits [ 1147.982171][T17331] SET = 0, FnV = 0 [ 1147.985906][T17331] EA = 0, S1PTW = 0 [ 1147.989734][T17331] FSC = 0x04: level 0 translation fault [ 1147.995292][T17331] Data abort info: [ 1147.998858][T17331] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 1148.005023][T17331] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 1148.010759][T17331] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 1148.016752][T17331] [dead000000000150] address between user and kernel address ranges [ 1148.024571][T17331] Internal error: Oops: 0000000096000004 [#1] SMP [ 1148.030825][T17331] Modules linked in: team_mode_loadbalance team nlmon act_gact cls_flower sch_ingress bonding tls macvlan dummy ib_core bridge stp llc veth amdgpu amdxcp mfd_core gpu_sched drm_exec drm_buddy radeon crct10dif_ce video drm_suballoc_helper ghash_ce drm_ttm_helper sha2_ce ttm sha256_arm64 i2c_algo_bit sha1_ce sbsa_gwdt cp210x drm_display_helper cec sr_mod cdrom drm_kms_helper binfmt_misc sg loop fuse drm dm_mod nfnetlink ip_tables autofs4 [last unloaded: tls] [ 1148.072808][T17331] CPU: 3 PID: 17331 Comm: ls Tainted: G W ------- ---- 6.6.43 #2 [ 1148.081751][T17331] Source Version: 21b3b386e948bedd29369af66f3e98ab01b1c650 [ 1148.088783][T17331] Hardware name: Greatwall GW-001M1A-FTF/GW-001M1A-FTF, BIOS KunLun BIOS V4.0 07/16/2020 [ 1148.098419][T17331] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 1148.106060][T17331] pc : eventfs_iterate+0x2c0/0x398 [ 1148.111017][T17331] lr : eventfs_iterate+0x2fc/0x398 [ 1148.115969][T17331] sp : ffff80008d56bbd0 [ 1148.119964][T17331] x29: ffff80008d56bbf0 x28: ffff001ff5be2600 x27: 0000000000000000 [ 1148.127781][T17331] x26: ffff001ff52ca4e0 x25: 0000000000009977 x24: dead000000000100 [ 1148.135598][T17331] x23: 0000000000000000 x22: 000000000000000b x21: ffff800082645f10 [ 1148.143415][T17331] x20: ffff001fddf87c70 x19: ffff80008d56bc90 x18: 0000000000000000 [ 1148.151231][T17331] x17: 0000000000000000 x16: 0000000000000000 x15: ffff001ff52ca4e0 [ 1148.159048][T17331] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 [ 1148.166864][T17331] x11: 0000000000000000 x10: 0000000000000000 x9 : ffff8000804391d0 [ 1148.174680][T17331] x8 : 0000000180000000 x7 : 0000000000000018 x6 : 0000aaab04b92862 [ 1148.182498][T17331] x5 : 0000aaab04b92862 x4 : 0000000080000000 x3 : 0000000000000068 [ 1148.190314][T17331] x2 : 000000000000000f x1 : 0000000000007ea8 x0 : 0000000000000001 [ 1148.198131][T17331] Call trace: [ 1148.201259][T17331] eventfs_iterate+0x2c0/0x398 [ 1148.205864][T17331] iterate_dir+0x98/0x188 [ 1148.210036][T17331] __arm64_sys_getdents64+0x78/0x160 [ 1148.215161][T17331] invoke_syscall+0x78/0x108 [ 1148.219593][T17331] el0_svc_common.constprop.0+0x48/0xf0 [ 1148.224977][T17331] do_el0_svc+0x24/0x38 [ 1148.228974][T17331] el0_svc+0x40/0x168 [ 1148.232798][T17 ---truncated---
In the Linux kernel, the following vulnerability has been resolved: fou: Fix null-ptr-deref in GRO. We observed a null-ptr-deref in fou_gro_receive() while shutting down a host. [0] The NULL pointer is sk->sk_user_data, and the offset 8 is of protocol in struct fou. When fou_release() is called due to netns dismantle or explicit tunnel teardown, udp_tunnel_sock_release() sets NULL to sk->sk_user_data. Then, the tunnel socket is destroyed after a single RCU grace period. So, in-flight udp4_gro_receive() could find the socket and execute the FOU GRO handler, where sk->sk_user_data could be NULL. Let's use rcu_dereference_sk_user_data() in fou_from_sock() and add NULL checks in FOU GRO handlers. [0]: BUG: kernel NULL pointer dereference, address: 0000000000000008 PF: supervisor read access in kernel mode PF: error_code(0x0000) - not-present page PGD 80000001032f4067 P4D 80000001032f4067 PUD 103240067 PMD 0 SMP PTI CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.10.216-204.855.amzn2.x86_64 #1 Hardware name: Amazon EC2 c5.large/, BIOS 1.0 10/16/2017 RIP: 0010:fou_gro_receive (net/ipv4/fou.c:233) [fou] Code: 41 5f c3 cc cc cc cc e8 e7 2e 69 f4 0f 1f 80 00 00 00 00 0f 1f 44 00 00 49 89 f8 41 54 48 89 f7 48 89 d6 49 8b 80 88 02 00 00 <0f> b6 48 08 0f b7 42 4a 66 25 fd fd 80 cc 02 66 89 42 4a 0f b6 42 RSP: 0018:ffffa330c0003d08 EFLAGS: 00010297 RAX: 0000000000000000 RBX: ffff93d9e3a6b900 RCX: 0000000000000010 RDX: ffff93d9e3a6b900 RSI: ffff93d9e3a6b900 RDI: ffff93dac2e24d08 RBP: ffff93d9e3a6b900 R08: ffff93dacbce6400 R09: 0000000000000002 R10: 0000000000000000 R11: ffffffffb5f369b0 R12: ffff93dacbce6400 R13: ffff93dac2e24d08 R14: 0000000000000000 R15: ffffffffb4edd1c0 FS: 0000000000000000(0000) GS:ffff93daee800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 0000000102140001 CR4: 00000000007706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <IRQ> ? show_trace_log_lvl (arch/x86/kernel/dumpstack.c:259) ? __die_body.cold (arch/x86/kernel/dumpstack.c:478 arch/x86/kernel/dumpstack.c:420) ? no_context (arch/x86/mm/fault.c:752) ? exc_page_fault (arch/x86/include/asm/irqflags.h:49 arch/x86/include/asm/irqflags.h:89 arch/x86/mm/fault.c:1435 arch/x86/mm/fault.c:1483) ? asm_exc_page_fault (arch/x86/include/asm/idtentry.h:571) ? fou_gro_receive (net/ipv4/fou.c:233) [fou] udp_gro_receive (include/linux/netdevice.h:2552 net/ipv4/udp_offload.c:559) udp4_gro_receive (net/ipv4/udp_offload.c:604) inet_gro_receive (net/ipv4/af_inet.c:1549 (discriminator 7)) dev_gro_receive (net/core/dev.c:6035 (discriminator 4)) napi_gro_receive (net/core/dev.c:6170) ena_clean_rx_irq (drivers/amazon/net/ena/ena_netdev.c:1558) [ena] ena_io_poll (drivers/amazon/net/ena/ena_netdev.c:1742) [ena] napi_poll (net/core/dev.c:6847) net_rx_action (net/core/dev.c:6917) __do_softirq (arch/x86/include/asm/jump_label.h:25 include/linux/jump_label.h:200 include/trace/events/irq.h:142 kernel/softirq.c:299) asm_call_irq_on_stack (arch/x86/entry/entry_64.S:809) </IRQ> do_softirq_own_stack (arch/x86/include/asm/irq_stack.h:27 arch/x86/include/asm/irq_stack.h:77 arch/x86/kernel/irq_64.c:77) irq_exit_rcu (kernel/softirq.c:393 kernel/softirq.c:423 kernel/softirq.c:435) common_interrupt (arch/x86/kernel/irq.c:239) asm_common_interrupt (arch/x86/include/asm/idtentry.h:626) RIP: 0010:acpi_idle_do_entry (arch/x86/include/asm/irqflags.h:49 arch/x86/include/asm/irqflags.h:89 drivers/acpi/processor_idle.c:114 drivers/acpi/processor_idle.c:575) Code: 8b 15 d1 3c c4 02 ed c3 cc cc cc cc 65 48 8b 04 25 40 ef 01 00 48 8b 00 a8 08 75 eb 0f 1f 44 00 00 0f 00 2d d5 09 55 00 fb f4 <fa> c3 cc cc cc cc e9 be fc ff ff 66 66 2e 0f 1f 84 00 00 00 00 00 RSP: 0018:ffffffffb5603e58 EFLAGS: 00000246 RAX: 0000000000004000 RBX: ffff93dac0929c00 RCX: ffff93daee833900 RDX: ffff93daee800000 RSI: ffff93d ---truncated---
In the Linux kernel, the following vulnerability has been resolved: firmware: qcom: scm: Mark get_wq_ctx() as atomic call Currently get_wq_ctx() is wrongly configured as a standard call. When two SMC calls are in sleep and one SMC wakes up, it calls get_wq_ctx() to resume the corresponding sleeping thread. But if get_wq_ctx() is interrupted, goes to sleep and another SMC call is waiting to be allocated a waitq context, it leads to a deadlock. To avoid this get_wq_ctx() must be an atomic call and can't be a standard SMC call. Hence mark get_wq_ctx() as a fast call.
In the Linux kernel, the following vulnerability has been resolved: tcp: prevent concurrent execution of tcp_sk_exit_batch Its possible that two threads call tcp_sk_exit_batch() concurrently, once from the cleanup_net workqueue, once from a task that failed to clone a new netns. In the latter case, error unwinding calls the exit handlers in reverse order for the 'failed' netns. tcp_sk_exit_batch() calls tcp_twsk_purge(). Problem is that since commit b099ce2602d8 ("net: Batch inet_twsk_purge"), this function picks up twsk in any dying netns, not just the one passed in via exit_batch list. This means that the error unwind of setup_net() can "steal" and destroy timewait sockets belonging to the exiting netns. This allows the netns exit worker to proceed to call WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount)); without the expected 1 -> 0 transition, which then splats. At same time, error unwind path that is also running inet_twsk_purge() will splat as well: WARNING: .. at lib/refcount.c:31 refcount_warn_saturate+0x1ed/0x210 ... refcount_dec include/linux/refcount.h:351 [inline] inet_twsk_kill+0x758/0x9c0 net/ipv4/inet_timewait_sock.c:70 inet_twsk_deschedule_put net/ipv4/inet_timewait_sock.c:221 inet_twsk_purge+0x725/0x890 net/ipv4/inet_timewait_sock.c:304 tcp_sk_exit_batch+0x1c/0x170 net/ipv4/tcp_ipv4.c:3522 ops_exit_list+0x128/0x180 net/core/net_namespace.c:178 setup_net+0x714/0xb40 net/core/net_namespace.c:375 copy_net_ns+0x2f0/0x670 net/core/net_namespace.c:508 create_new_namespaces+0x3ea/0xb10 kernel/nsproxy.c:110 ... because refcount_dec() of tw_refcount unexpectedly dropped to 0. This doesn't seem like an actual bug (no tw sockets got lost and I don't see a use-after-free) but as erroneous trigger of debug check. Add a mutex to force strict ordering: the task that calls tcp_twsk_purge() blocks other task from doing final _dec_and_test before mutex-owner has removed all tw sockets of dying netns.
In the Linux kernel, the following vulnerability has been resolved: binfmt_flat: Fix corruption when not offsetting data start Commit 04d82a6d0881 ("binfmt_flat: allow not offsetting data start") introduced a RISC-V specific variant of the FLAT format which does not allocate any space for the (obsolete) array of shared library pointers. However, it did not disable the code which initializes the array, resulting in the corruption of sizeof(long) bytes before the DATA segment, generally the end of the TEXT segment. Introduce MAX_SHARED_LIBS_UPDATE which depends on the state of CONFIG_BINFMT_FLAT_NO_DATA_START_OFFSET to guard the initialization of the shared library pointer region so that it will only be initialized if space is reserved for it.
In the Linux kernel, the following vulnerability has been resolved: KVM: s390: fix validity interception issue when gisa is switched off We might run into a SIE validity if gisa has been disabled either via using kernel parameter "kvm.use_gisa=0" or by setting the related sysfs attribute to N (echo N >/sys/module/kvm/parameters/use_gisa). The validity is caused by an invalid value in the SIE control block's gisa designation. That happens because we pass the uninitialized gisa origin to virt_to_phys() before writing it to the gisa designation. To fix this we return 0 in kvm_s390_get_gisa_desc() if the origin is 0. kvm_s390_get_gisa_desc() is used to determine which gisa designation to set in the SIE control block. A value of 0 in the gisa designation disables gisa usage. The issue surfaces in the host kernel with the following kernel message as soon a new kvm guest start is attemted. kvm: unhandled validity intercept 0x1011 WARNING: CPU: 0 PID: 781237 at arch/s390/kvm/intercept.c:101 kvm_handle_sie_intercept+0x42e/0x4d0 [kvm] Modules linked in: vhost_net tap tun xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT xt_tcpudp nft_compat x_tables nf_nat_tftp nf_conntrack_tftp vfio_pci_core irqbypass vhost_vsock vmw_vsock_virtio_transport_common vsock vhost vhost_iotlb kvm nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables sunrpc mlx5_ib ib_uverbs ib_core mlx5_core uvdevice s390_trng eadm_sch vfio_ccw zcrypt_cex4 mdev vfio_iommu_type1 vfio sch_fq_codel drm i2c_core loop drm_panel_orientation_quirks configfs nfnetlink lcs ctcm fsm dm_service_time ghash_s390 prng chacha_s390 libchacha aes_s390 des_s390 libdes sha3_512_s390 sha3_256_s390 sha512_s390 sha256_s390 sha1_s390 sha_common dm_mirror dm_region_hash dm_log zfcp scsi_transport_fc scsi_dh_rdac scsi_dh_emc scsi_dh_alua pkey zcrypt dm_multipath rng_core autofs4 [last unloaded: vfio_pci] CPU: 0 PID: 781237 Comm: CPU 0/KVM Not tainted 6.10.0-08682-gcad9f11498ea #6 Hardware name: IBM 3931 A01 701 (LPAR) Krnl PSW : 0704c00180000000 000003d93deb0122 (kvm_handle_sie_intercept+0x432/0x4d0 [kvm]) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:0 PM:0 RI:0 EA:3 Krnl GPRS: 000003d900000027 000003d900000023 0000000000000028 000002cd00000000 000002d063a00900 00000359c6daf708 00000000000bebb5 0000000000001eff 000002cfd82e9000 000002cfd80bc000 0000000000001011 000003d93deda412 000003ff8962df98 000003d93de77ce0 000003d93deb011e 00000359c6daf960 Krnl Code: 000003d93deb0112: c020fffe7259 larl %r2,000003d93de7e5c4 000003d93deb0118: c0e53fa8beac brasl %r14,000003d9bd3c7e70 #000003d93deb011e: af000000 mc 0,0 >000003d93deb0122: a728ffea lhi %r2,-22 000003d93deb0126: a7f4fe24 brc 15,000003d93deafd6e 000003d93deb012a: 9101f0b0 tm 176(%r15),1 000003d93deb012e: a774fe48 brc 7,000003d93deafdbe 000003d93deb0132: 40a0f0ae sth %r10,174(%r15) Call Trace: [<000003d93deb0122>] kvm_handle_sie_intercept+0x432/0x4d0 [kvm] ([<000003d93deb011e>] kvm_handle_sie_intercept+0x42e/0x4d0 [kvm]) [<000003d93deacc10>] vcpu_post_run+0x1d0/0x3b0 [kvm] [<000003d93deaceda>] __vcpu_run+0xea/0x2d0 [kvm] [<000003d93dead9da>] kvm_arch_vcpu_ioctl_run+0x16a/0x430 [kvm] [<000003d93de93ee0>] kvm_vcpu_ioctl+0x190/0x7c0 [kvm] [<000003d9bd728b4e>] vfs_ioctl+0x2e/0x70 [<000003d9bd72a092>] __s390x_sys_ioctl+0xc2/0xd0 [<000003d9be0e9222>] __do_syscall+0x1f2/0x2e0 [<000003d9be0f9a90>] system_call+0x70/0x98 Last Breaking-Event-Address: [<000003d9bd3c7f58>] __warn_printk+0xe8/0xf0
In the Linux kernel, the following vulnerability has been resolved: nvme: move stopping keep-alive into nvme_uninit_ctrl() Commit 4733b65d82bd ("nvme: start keep-alive after admin queue setup") moves starting keep-alive from nvme_start_ctrl() into nvme_init_ctrl_finish(), but don't move stopping keep-alive into nvme_uninit_ctrl(), so keep-alive work can be started and keep pending after failing to start controller, finally use-after-free is triggered if nvme host driver is unloaded. This patch fixes kernel panic when running nvme/004 in case that connection failure is triggered, by moving stopping keep-alive into nvme_uninit_ctrl(). This way is reasonable because keep-alive is now started in nvme_init_ctrl_finish().
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Take state lock during tx timeout reporter mlx5e_safe_reopen_channels() requires the state lock taken. The referenced changed in the Fixes tag removed the lock to fix another issue. This patch adds it back but at a later point (when calling mlx5e_safe_reopen_channels()) to avoid the deadlock referenced in the Fixes tag.
In the Linux kernel, the following vulnerability has been resolved: netem: fix return value if duplicate enqueue fails There is a bug in netem_enqueue() introduced by commit 5845f706388a ("net: netem: fix skb length BUG_ON in __skb_to_sgvec") that can lead to a use-after-free. This commit made netem_enqueue() always return NET_XMIT_SUCCESS when a packet is duplicated, which can cause the parent qdisc's q.qlen to be mistakenly incremented. When this happens qlen_notify() may be skipped on the parent during destruction, leaving a dangling pointer for some classful qdiscs like DRR. There are two ways for the bug happen: - If the duplicated packet is dropped by rootq->enqueue() and then the original packet is also dropped. - If rootq->enqueue() sends the duplicated packet to a different qdisc and the original packet is dropped. In both cases NET_XMIT_SUCCESS is returned even though no packets are enqueued at the netem qdisc. The fix is to defer the enqueue of the duplicate packet until after the original packet has been guaranteed to return NET_XMIT_SUCCESS.
In the Linux kernel, the following vulnerability has been resolved: kcm: Serialise kcm_sendmsg() for the same socket. syzkaller reported UAF in kcm_release(). [0] The scenario is 1. Thread A builds a skb with MSG_MORE and sets kcm->seq_skb. 2. Thread A resumes building skb from kcm->seq_skb but is blocked by sk_stream_wait_memory() 3. Thread B calls sendmsg() concurrently, finishes building kcm->seq_skb and puts the skb to the write queue 4. Thread A faces an error and finally frees skb that is already in the write queue 5. kcm_release() does double-free the skb in the write queue When a thread is building a MSG_MORE skb, another thread must not touch it. Let's add a per-sk mutex and serialise kcm_sendmsg(). [0]: BUG: KASAN: slab-use-after-free in __skb_unlink include/linux/skbuff.h:2366 [inline] BUG: KASAN: slab-use-after-free in __skb_dequeue include/linux/skbuff.h:2385 [inline] BUG: KASAN: slab-use-after-free in __skb_queue_purge_reason include/linux/skbuff.h:3175 [inline] BUG: KASAN: slab-use-after-free in __skb_queue_purge include/linux/skbuff.h:3181 [inline] BUG: KASAN: slab-use-after-free in kcm_release+0x170/0x4c8 net/kcm/kcmsock.c:1691 Read of size 8 at addr ffff0000ced0fc80 by task syz-executor329/6167 CPU: 1 PID: 6167 Comm: syz-executor329 Tainted: G B 6.8.0-rc5-syzkaller-g9abbc24128bc #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 Call trace: dump_backtrace+0x1b8/0x1e4 arch/arm64/kernel/stacktrace.c:291 show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:298 __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xd0/0x124 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:377 [inline] print_report+0x178/0x518 mm/kasan/report.c:488 kasan_report+0xd8/0x138 mm/kasan/report.c:601 __asan_report_load8_noabort+0x20/0x2c mm/kasan/report_generic.c:381 __skb_unlink include/linux/skbuff.h:2366 [inline] __skb_dequeue include/linux/skbuff.h:2385 [inline] __skb_queue_purge_reason include/linux/skbuff.h:3175 [inline] __skb_queue_purge include/linux/skbuff.h:3181 [inline] kcm_release+0x170/0x4c8 net/kcm/kcmsock.c:1691 __sock_release net/socket.c:659 [inline] sock_close+0xa4/0x1e8 net/socket.c:1421 __fput+0x30c/0x738 fs/file_table.c:376 ____fput+0x20/0x30 fs/file_table.c:404 task_work_run+0x230/0x2e0 kernel/task_work.c:180 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x618/0x1f64 kernel/exit.c:871 do_group_exit+0x194/0x22c kernel/exit.c:1020 get_signal+0x1500/0x15ec kernel/signal.c:2893 do_signal+0x23c/0x3b44 arch/arm64/kernel/signal.c:1249 do_notify_resume+0x74/0x1f4 arch/arm64/kernel/entry-common.c:148 exit_to_user_mode_prepare arch/arm64/kernel/entry-common.c:169 [inline] exit_to_user_mode arch/arm64/kernel/entry-common.c:178 [inline] el0_svc+0xac/0x168 arch/arm64/kernel/entry-common.c:713 el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:730 el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598 Allocated by task 6166: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x40/0x78 mm/kasan/common.c:68 kasan_save_alloc_info+0x70/0x84 mm/kasan/generic.c:626 unpoison_slab_object mm/kasan/common.c:314 [inline] __kasan_slab_alloc+0x74/0x8c mm/kasan/common.c:340 kasan_slab_alloc include/linux/kasan.h:201 [inline] slab_post_alloc_hook mm/slub.c:3813 [inline] slab_alloc_node mm/slub.c:3860 [inline] kmem_cache_alloc_node+0x204/0x4c0 mm/slub.c:3903 __alloc_skb+0x19c/0x3d8 net/core/skbuff.c:641 alloc_skb include/linux/skbuff.h:1296 [inline] kcm_sendmsg+0x1d3c/0x2124 net/kcm/kcmsock.c:783 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] sock_sendmsg+0x220/0x2c0 net/socket.c:768 splice_to_socket+0x7cc/0xd58 fs/splice.c:889 do_splice_from fs/splice.c:941 [inline] direct_splice_actor+0xec/0x1d8 fs/splice.c:1164 splice_direct_to_actor+0x438/0xa0c fs/splice.c:1108 do_splice_direct_actor ---truncated---
In the Linux kernel, the following vulnerability has been resolved: igb: cope with large MAX_SKB_FRAGS Sabrina reports that the igb driver does not cope well with large MAX_SKB_FRAG values: setting MAX_SKB_FRAG to 45 causes payload corruption on TX. An easy reproducer is to run ssh to connect to the machine. With MAX_SKB_FRAGS=17 it works, with MAX_SKB_FRAGS=45 it fails. This has been reported originally in https://bugzilla.redhat.com/show_bug.cgi?id=2265320 The root cause of the issue is that the driver does not take into account properly the (possibly large) shared info size when selecting the ring layout, and will try to fit two packets inside the same 4K page even when the 1st fraglist will trump over the 2nd head. Address the issue by checking if 2K buffers are insufficient.
In the Linux kernel, the following vulnerability has been resolved: xhci: Fix Panther point NULL pointer deref at full-speed re-enumeration re-enumerating full-speed devices after a failed address device command can trigger a NULL pointer dereference. Full-speed devices may need to reconfigure the endpoint 0 Max Packet Size value during enumeration. Usb core calls usb_ep0_reinit() in this case, which ends up calling xhci_configure_endpoint(). On Panther point xHC the xhci_configure_endpoint() function will additionally check and reserve bandwidth in software. Other hosts do this in hardware If xHC address device command fails then a new xhci_virt_device structure is allocated as part of re-enabling the slot, but the bandwidth table pointers are not set up properly here. This triggers the NULL pointer dereference the next time usb_ep0_reinit() is called and xhci_configure_endpoint() tries to check and reserve bandwidth [46710.713538] usb 3-1: new full-speed USB device number 5 using xhci_hcd [46710.713699] usb 3-1: Device not responding to setup address. [46710.917684] usb 3-1: Device not responding to setup address. [46711.125536] usb 3-1: device not accepting address 5, error -71 [46711.125594] BUG: kernel NULL pointer dereference, address: 0000000000000008 [46711.125600] #PF: supervisor read access in kernel mode [46711.125603] #PF: error_code(0x0000) - not-present page [46711.125606] PGD 0 P4D 0 [46711.125610] Oops: Oops: 0000 [#1] PREEMPT SMP PTI [46711.125615] CPU: 1 PID: 25760 Comm: kworker/1:2 Not tainted 6.10.3_2 #1 [46711.125620] Hardware name: Gigabyte Technology Co., Ltd. [46711.125623] Workqueue: usb_hub_wq hub_event [usbcore] [46711.125668] RIP: 0010:xhci_reserve_bandwidth (drivers/usb/host/xhci.c Fix this by making sure bandwidth table pointers are set up correctly after a failed address device command, and additionally by avoiding checking for bandwidth in cases like this where no actual endpoints are added or removed, i.e. only context for default control endpoint 0 is evaluated.
In the Linux kernel, the following vulnerability has been resolved: net: dsa: bcm_sf2: Fix a possible memory leak in bcm_sf2_mdio_register() bcm_sf2_mdio_register() calls of_phy_find_device() and then phy_device_remove() in a loop to remove existing PHY devices. of_phy_find_device() eventually calls bus_find_device(), which calls get_device() on the returned struct device * to increment the refcount. The current implementation does not decrement the refcount, which causes memory leak. This commit adds the missing phy_device_free() call to decrement the refcount via put_device() to balance the refcount.
In the Linux kernel, the following vulnerability has been resolved: usbnet: fix memory leak in error case usbnet_write_cmd_async() mixed up which buffers need to be freed in which error case. v2: add Fixes tag v3: fix uninitialized buf pointer
In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix opregion leak Being part o the display, ideally the setup and cleanup would be done by display itself. However this is a bigger refactor that needs to be done on both i915 and xe. For now, just fix the leak: unreferenced object 0xffff8881a0300008 (size 192): comm "modprobe", pid 4354, jiffies 4295647021 hex dump (first 32 bytes): 00 00 87 27 81 88 ff ff 18 80 9b 00 00 c9 ff ff ...'............ 18 81 9b 00 00 c9 ff ff 00 00 00 00 00 00 00 00 ................ backtrace (crc 99260e31): [<ffffffff823ce65b>] kmemleak_alloc+0x4b/0x80 [<ffffffff81493be2>] kmalloc_trace_noprof+0x312/0x3d0 [<ffffffffa1345679>] intel_opregion_setup+0x89/0x700 [xe] [<ffffffffa125bfaf>] xe_display_init_noirq+0x2f/0x90 [xe] [<ffffffffa1199ec3>] xe_device_probe+0x7a3/0xbf0 [xe] [<ffffffffa11f3713>] xe_pci_probe+0x333/0x5b0 [xe] [<ffffffff81af6be8>] local_pci_probe+0x48/0xb0 [<ffffffff81af8778>] pci_device_probe+0xc8/0x280 [<ffffffff81d09048>] really_probe+0xf8/0x390 [<ffffffff81d0937a>] __driver_probe_device+0x8a/0x170 [<ffffffff81d09503>] driver_probe_device+0x23/0xb0 [<ffffffff81d097b7>] __driver_attach+0xc7/0x190 [<ffffffff81d0628d>] bus_for_each_dev+0x7d/0xd0 [<ffffffff81d0851e>] driver_attach+0x1e/0x30 [<ffffffff81d07ac7>] bus_add_driver+0x117/0x250 (cherry picked from commit 6f4e43a2f771b737d991142ec4f6d4b7ff31fbb4)
In the Linux kernel, the following vulnerability has been resolved: memcg_write_event_control(): fix a user-triggerable oops we are *not* guaranteed that anything past the terminating NUL is mapped (let alone initialized with anything sane).
In the Linux kernel, the following vulnerability has been resolved: mptcp: pm: only mark 'subflow' endp as available Adding the following warning ... WARN_ON_ONCE(msk->pm.local_addr_used == 0) ... before decrementing the local_addr_used counter helped to find a bug when running the "remove single address" subtest from the mptcp_join.sh selftests. Removing a 'signal' endpoint will trigger the removal of all subflows linked to this endpoint via mptcp_pm_nl_rm_addr_or_subflow() with rm_type == MPTCP_MIB_RMSUBFLOW. This will decrement the local_addr_used counter, which is wrong in this case because this counter is linked to 'subflow' endpoints, and here it is a 'signal' endpoint that is being removed. Now, the counter is decremented, only if the ID is being used outside of mptcp_pm_nl_rm_addr_or_subflow(), only for 'subflow' endpoints, and if the ID is not 0 -- local_addr_used is not taking into account these ones. This marking of the ID as being available, and the decrement is done no matter if a subflow using this ID is currently available, because the subflow could have been closed before.
In the Linux kernel, the following vulnerability has been resolved: mm: gup: stop abusing try_grab_folio A kernel warning was reported when pinning folio in CMA memory when launching SEV virtual machine. The splat looks like: [ 464.325306] WARNING: CPU: 13 PID: 6734 at mm/gup.c:1313 __get_user_pages+0x423/0x520 [ 464.325464] CPU: 13 PID: 6734 Comm: qemu-kvm Kdump: loaded Not tainted 6.6.33+ #6 [ 464.325477] RIP: 0010:__get_user_pages+0x423/0x520 [ 464.325515] Call Trace: [ 464.325520] <TASK> [ 464.325523] ? __get_user_pages+0x423/0x520 [ 464.325528] ? __warn+0x81/0x130 [ 464.325536] ? __get_user_pages+0x423/0x520 [ 464.325541] ? report_bug+0x171/0x1a0 [ 464.325549] ? handle_bug+0x3c/0x70 [ 464.325554] ? exc_invalid_op+0x17/0x70 [ 464.325558] ? asm_exc_invalid_op+0x1a/0x20 [ 464.325567] ? __get_user_pages+0x423/0x520 [ 464.325575] __gup_longterm_locked+0x212/0x7a0 [ 464.325583] internal_get_user_pages_fast+0xfb/0x190 [ 464.325590] pin_user_pages_fast+0x47/0x60 [ 464.325598] sev_pin_memory+0xca/0x170 [kvm_amd] [ 464.325616] sev_mem_enc_register_region+0x81/0x130 [kvm_amd] Per the analysis done by yangge, when starting the SEV virtual machine, it will call pin_user_pages_fast(..., FOLL_LONGTERM, ...) to pin the memory. But the page is in CMA area, so fast GUP will fail then fallback to the slow path due to the longterm pinnalbe check in try_grab_folio(). The slow path will try to pin the pages then migrate them out of CMA area. But the slow path also uses try_grab_folio() to pin the page, it will also fail due to the same check then the above warning is triggered. In addition, the try_grab_folio() is supposed to be used in fast path and it elevates folio refcount by using add ref unless zero. We are guaranteed to have at least one stable reference in slow path, so the simple atomic add could be used. The performance difference should be trivial, but the misuse may be confusing and misleading. Redefined try_grab_folio() to try_grab_folio_fast(), and try_grab_page() to try_grab_folio(), and use them in the proper paths. This solves both the abuse and the kernel warning. The proper naming makes their usecase more clear and should prevent from abusing in the future. peterx said: : The user will see the pin fails, for gpu-slow it further triggers the WARN : right below that failure (as in the original report): : : folio = try_grab_folio(page, page_increm - 1, : foll_flags); : if (WARN_ON_ONCE(!folio)) { <------------------------ here : /* : * Release the 1st page ref if the : * folio is problematic, fail hard. : */ : gup_put_folio(page_folio(page), 1, : foll_flags); : ret = -EFAULT; : goto out; : } [1] https://lore.kernel.org/linux-mm/1719478388-31917-1-git-send-email-yangge1116@126.com/ [shy828301@gmail.com: fix implicit declaration of function try_grab_folio_fast]
In the Linux kernel, the following vulnerability has been resolved: net: mana: Fix RX buf alloc_size alignment and atomic op panic The MANA driver's RX buffer alloc_size is passed into napi_build_skb() to create SKB. skb_shinfo(skb) is located at the end of skb, and its alignment is affected by the alloc_size passed into napi_build_skb(). The size needs to be aligned properly for better performance and atomic operations. Otherwise, on ARM64 CPU, for certain MTU settings like 4000, atomic operations may panic on the skb_shinfo(skb)->dataref due to alignment fault. To fix this bug, add proper alignment to the alloc_size calculation. Sample panic info: [ 253.298819] Unable to handle kernel paging request at virtual address ffff000129ba5cce [ 253.300900] Mem abort info: [ 253.301760] ESR = 0x0000000096000021 [ 253.302825] EC = 0x25: DABT (current EL), IL = 32 bits [ 253.304268] SET = 0, FnV = 0 [ 253.305172] EA = 0, S1PTW = 0 [ 253.306103] FSC = 0x21: alignment fault Call trace: __skb_clone+0xfc/0x198 skb_clone+0x78/0xe0 raw6_local_deliver+0xfc/0x228 ip6_protocol_deliver_rcu+0x80/0x500 ip6_input_finish+0x48/0x80 ip6_input+0x48/0xc0 ip6_sublist_rcv_finish+0x50/0x78 ip6_sublist_rcv+0x1cc/0x2b8 ipv6_list_rcv+0x100/0x150 __netif_receive_skb_list_core+0x180/0x220 netif_receive_skb_list_internal+0x198/0x2a8 __napi_poll+0x138/0x250 net_rx_action+0x148/0x330 handle_softirqs+0x12c/0x3a0
In the Linux kernel, the following vulnerability has been resolved: s390/sclp: Prevent release of buffer in I/O When a task waiting for completion of a Store Data operation is interrupted, an attempt is made to halt this operation. If this attempt fails due to a hardware or firmware problem, there is a chance that the SCLP facility might store data into buffers referenced by the original operation at a later time. Handle this situation by not releasing the referenced data buffers if the halt attempt fails. For current use cases, this might result in a leak of few pages of memory in case of a rare hardware/firmware malfunction.
In the Linux kernel, the following vulnerability has been resolved: mmc: mmc_test: Fix NULL dereference on allocation failure If the "test->highmem = alloc_pages()" allocation fails then calling __free_pages(test->highmem) will result in a NULL dereference. Also change the error code to -ENOMEM instead of returning success.
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix double DMA unmapping for XDP_REDIRECT Remove the dma_unmap_page_attrs() call in the driver's XDP_REDIRECT code path. This should have been removed when we let the page pool handle the DMA mapping. This bug causes the warning: WARNING: CPU: 7 PID: 59 at drivers/iommu/dma-iommu.c:1198 iommu_dma_unmap_page+0xd5/0x100 CPU: 7 PID: 59 Comm: ksoftirqd/7 Tainted: G W 6.8.0-1010-gcp #11-Ubuntu Hardware name: Dell Inc. PowerEdge R7525/0PYVT1, BIOS 2.15.2 04/02/2024 RIP: 0010:iommu_dma_unmap_page+0xd5/0x100 Code: 89 ee 48 89 df e8 cb f2 69 ff 48 83 c4 08 5b 41 5c 41 5d 41 5e 41 5f 5d 31 c0 31 d2 31 c9 31 f6 31 ff 45 31 c0 e9 ab 17 71 00 <0f> 0b 48 83 c4 08 5b 41 5c 41 5d 41 5e 41 5f 5d 31 c0 31 d2 31 c9 RSP: 0018:ffffab1fc0597a48 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff99ff838280c8 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffab1fc0597a78 R08: 0000000000000002 R09: ffffab1fc0597c1c R10: ffffab1fc0597cd3 R11: ffff99ffe375acd8 R12: 00000000e65b9000 R13: 0000000000000050 R14: 0000000000001000 R15: 0000000000000002 FS: 0000000000000000(0000) GS:ffff9a06efb80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000565c34c37210 CR3: 00000005c7e3e000 CR4: 0000000000350ef0 ? show_regs+0x6d/0x80 ? __warn+0x89/0x150 ? iommu_dma_unmap_page+0xd5/0x100 ? report_bug+0x16a/0x190 ? handle_bug+0x51/0xa0 ? exc_invalid_op+0x18/0x80 ? iommu_dma_unmap_page+0xd5/0x100 ? iommu_dma_unmap_page+0x35/0x100 dma_unmap_page_attrs+0x55/0x220 ? bpf_prog_4d7e87c0d30db711_xdp_dispatcher+0x64/0x9f bnxt_rx_xdp+0x237/0x520 [bnxt_en] bnxt_rx_pkt+0x640/0xdd0 [bnxt_en] __bnxt_poll_work+0x1a1/0x3d0 [bnxt_en] bnxt_poll+0xaa/0x1e0 [bnxt_en] __napi_poll+0x33/0x1e0 net_rx_action+0x18a/0x2f0
In the Linux kernel, the following vulnerability has been resolved: mm, slub: do not call do_slab_free for kfence object In 782f8906f805 the freeing of kfence objects was moved from deep inside do_slab_free to the wrapper functions outside. This is a nice change, but unfortunately it missed one spot in __kmem_cache_free_bulk. This results in a crash like this: BUG skbuff_head_cache (Tainted: G S B E ): Padding overwritten. 0xffff88907fea0f00-0xffff88907fea0fff @offset=3840 slab_err (mm/slub.c:1129) free_to_partial_list (mm/slub.c:? mm/slub.c:4036) slab_pad_check (mm/slub.c:864 mm/slub.c:1290) check_slab (mm/slub.c:?) free_to_partial_list (mm/slub.c:3171 mm/slub.c:4036) kmem_cache_alloc_bulk (mm/slub.c:? mm/slub.c:4495 mm/slub.c:4586 mm/slub.c:4635) napi_build_skb (net/core/skbuff.c:348 net/core/skbuff.c:527 net/core/skbuff.c:549) All the other callers to do_slab_free appear to be ok. Add a kfence_free check in __kmem_cache_free_bulk to avoid the crash.
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix a kernel verifier crash in stacksafe() Daniel Hodges reported a kernel verifier crash when playing with sched-ext. Further investigation shows that the crash is due to invalid memory access in stacksafe(). More specifically, it is the following code: if (exact != NOT_EXACT && old->stack[spi].slot_type[i % BPF_REG_SIZE] != cur->stack[spi].slot_type[i % BPF_REG_SIZE]) return false; The 'i' iterates old->allocated_stack. If cur->allocated_stack < old->allocated_stack the out-of-bound access will happen. To fix the issue add 'i >= cur->allocated_stack' check such that if the condition is true, stacksafe() should fail. Otherwise, cur->stack[spi].slot_type[i % BPF_REG_SIZE] memory access is legal.
In the Linux kernel, the following vulnerability has been resolved: rtla/osnoise: Prevent NULL dereference in error handling If the "tool->data" allocation fails then there is no need to call osnoise_free_top() and, in fact, doing so will lead to a NULL dereference.
In the Linux kernel, the following vulnerability has been resolved: usb: xhci: Check for xhci->interrupters being allocated in xhci_mem_clearup() If xhci_mem_init() fails, it calls into xhci_mem_cleanup() to mop up the damage. If it fails early enough, before xhci->interrupters is allocated but after xhci->max_interrupters has been set, which happens in most (all?) cases, things get uglier, as xhci_mem_cleanup() unconditionally derefences xhci->interrupters. With prejudice. Gate the interrupt freeing loop with a check on xhci->interrupters being non-NULL. Found while debugging a DMA allocation issue that led the XHCI driver on this exact path.
In the Linux kernel, the following vulnerability has been resolved: i2c: tegra: Do not mark ACPI devices as irq safe On ACPI machines, the tegra i2c module encounters an issue due to a mutex being called inside a spinlock. This leads to the following bug: BUG: sleeping function called from invalid context at kernel/locking/mutex.c:585 ... Call trace: __might_sleep __mutex_lock_common mutex_lock_nested acpi_subsys_runtime_resume rpm_resume tegra_i2c_xfer The problem arises because during __pm_runtime_resume(), the spinlock &dev->power.lock is acquired before rpm_resume() is called. Later, rpm_resume() invokes acpi_subsys_runtime_resume(), which relies on mutexes, triggering the error. To address this issue, devices on ACPI are now marked as not IRQ-safe, considering the dependency of acpi_subsys_runtime_resume() on mutexes.
In the Linux kernel, the following vulnerability has been resolved: net: dsa: mv88e6xxx: Fix out-of-bound access If an ATU violation was caused by a CPU Load operation, the SPID could be larger than DSA_MAX_PORTS (the size of mv88e6xxx_chip.ports[] array).
In the Linux kernel, the following vulnerability has been resolved: jfs: fix null ptr deref in dtInsertEntry [syzbot reported] general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] CPU: 0 PID: 5061 Comm: syz-executor404 Not tainted 6.8.0-syzkaller-08951-gfe46a7dd189e #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 RIP: 0010:dtInsertEntry+0xd0c/0x1780 fs/jfs/jfs_dtree.c:3713 ... [Analyze] In dtInsertEntry(), when the pointer h has the same value as p, after writing name in UniStrncpy_to_le(), p->header.flag will be cleared. This will cause the previously true judgment "p->header.flag & BT-LEAF" to change to no after writing the name operation, this leads to entering an incorrect branch and accessing the uninitialized object ih when judging this condition for the second time. [Fix] After got the page, check freelist first, if freelist == 0 then exit dtInsert() and return -EINVAL.
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix deadlock during RTC update There is a deadlock when runtime suspend waits for the flush of RTC work, and the RTC work calls ufshcd_rpm_get_sync() to wait for runtime resume. Here is deadlock backtrace: kworker/0:1 D 4892.876354 10 10971 4859 0x4208060 0x8 10 0 120 670730152367 ptr f0ffff80c2e40000 0 1 0x00000001 0x000000ff 0x000000ff 0x000000ff <ffffffee5e71ddb0> __switch_to+0x1a8/0x2d4 <ffffffee5e71e604> __schedule+0x684/0xa98 <ffffffee5e71ea60> schedule+0x48/0xc8 <ffffffee5e725f78> schedule_timeout+0x48/0x170 <ffffffee5e71fb74> do_wait_for_common+0x108/0x1b0 <ffffffee5e71efe0> wait_for_completion+0x44/0x60 <ffffffee5d6de968> __flush_work+0x39c/0x424 <ffffffee5d6decc0> __cancel_work_sync+0xd8/0x208 <ffffffee5d6dee2c> cancel_delayed_work_sync+0x14/0x28 <ffffffee5e2551b8> __ufshcd_wl_suspend+0x19c/0x480 <ffffffee5e255fb8> ufshcd_wl_runtime_suspend+0x3c/0x1d4 <ffffffee5dffd80c> scsi_runtime_suspend+0x78/0xc8 <ffffffee5df93580> __rpm_callback+0x94/0x3e0 <ffffffee5df90b0c> rpm_suspend+0x2d4/0x65c <ffffffee5df91448> __pm_runtime_suspend+0x80/0x114 <ffffffee5dffd95c> scsi_runtime_idle+0x38/0x6c <ffffffee5df912f4> rpm_idle+0x264/0x338 <ffffffee5df90f14> __pm_runtime_idle+0x80/0x110 <ffffffee5e24ce44> ufshcd_rtc_work+0x128/0x1e4 <ffffffee5d6e3a40> process_one_work+0x26c/0x650 <ffffffee5d6e65c8> worker_thread+0x260/0x3d8 <ffffffee5d6edec8> kthread+0x110/0x134 <ffffffee5d616b18> ret_from_fork+0x10/0x20 Skip updating RTC if RPM state is not RPM_ACTIVE.
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: cleanup FB if dpu_format_populate_layout fails If the dpu_format_populate_layout() fails, then FB is prepared, but not cleaned up. This ends up leaking the pin_count on the GEM object and causes a splat during DRM file closure: msm_obj->pin_count WARNING: CPU: 2 PID: 569 at drivers/gpu/drm/msm/msm_gem.c:121 update_lru_locked+0xc4/0xcc [...] Call trace: update_lru_locked+0xc4/0xcc put_pages+0xac/0x100 msm_gem_free_object+0x138/0x180 drm_gem_object_free+0x1c/0x30 drm_gem_object_handle_put_unlocked+0x108/0x10c drm_gem_object_release_handle+0x58/0x70 idr_for_each+0x68/0xec drm_gem_release+0x28/0x40 drm_file_free+0x174/0x234 drm_release+0xb0/0x160 __fput+0xc0/0x2c8 __fput_sync+0x50/0x5c __arm64_sys_close+0x38/0x7c invoke_syscall+0x48/0x118 el0_svc_common.constprop.0+0x40/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x4c/0x120 el0t_64_sync_handler+0x100/0x12c el0t_64_sync+0x190/0x194 irq event stamp: 129818 hardirqs last enabled at (129817): [<ffffa5f6d953fcc0>] console_unlock+0x118/0x124 hardirqs last disabled at (129818): [<ffffa5f6da7dcf04>] el1_dbg+0x24/0x8c softirqs last enabled at (129808): [<ffffa5f6d94afc18>] handle_softirqs+0x4c8/0x4e8 softirqs last disabled at (129785): [<ffffa5f6d94105e4>] __do_softirq+0x14/0x20 Patchwork: https://patchwork.freedesktop.org/patch/600714/
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btnxpuart: Shutdown timer and prevent rearming when driver unloading When unload the btnxpuart driver, its associated timer will be deleted. If the timer happens to be modified at this moment, it leads to the kernel call this timer even after the driver unloaded, resulting in kernel panic. Use timer_shutdown_sync() instead of del_timer_sync() to prevent rearming. panic log: Internal error: Oops: 0000000086000007 [#1] PREEMPT SMP Modules linked in: algif_hash algif_skcipher af_alg moal(O) mlan(O) crct10dif_ce polyval_ce polyval_generic snd_soc_imx_card snd_soc_fsl_asoc_card snd_soc_imx_audmux mxc_jpeg_encdec v4l2_jpeg snd_soc_wm8962 snd_soc_fsl_micfil snd_soc_fsl_sai flexcan snd_soc_fsl_utils ap130x rpmsg_ctrl imx_pcm_dma can_dev rpmsg_char pwm_fan fuse [last unloaded: btnxpuart] CPU: 5 PID: 723 Comm: memtester Tainted: G O 6.6.23-lts-next-06207-g4aef2658ac28 #1 Hardware name: NXP i.MX95 19X19 board (DT) pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : 0xffff80007a2cf464 lr : call_timer_fn.isra.0+0x24/0x80 ... Call trace: 0xffff80007a2cf464 __run_timers+0x234/0x280 run_timer_softirq+0x20/0x40 __do_softirq+0x100/0x26c ____do_softirq+0x10/0x1c call_on_irq_stack+0x24/0x4c do_softirq_own_stack+0x1c/0x2c irq_exit_rcu+0xc0/0xdc el0_interrupt+0x54/0xd8 __el0_irq_handler_common+0x18/0x24 el0t_64_irq_handler+0x10/0x1c el0t_64_irq+0x190/0x194 Code: ???????? ???????? ???????? ???????? (????????) ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Oops: Fatal exception in interrupt SMP: stopping secondary CPUs Kernel Offset: disabled CPU features: 0x0,c0000000,40028143,1000721b Memory Limit: none ---[ end Kernel panic - not syncing: Oops: Fatal exception in interrupt ]---
In the Linux kernel, the following vulnerability has been resolved: netfilter: ctnetlink: use helper function to calculate expect ID Delete expectation path is missing a call to the nf_expect_get_id() helper function to calculate the expectation ID, otherwise LSB of the expectation object address is leaked to userspace.
In the Linux kernel, the following vulnerability has been resolved: drm/xe/preempt_fence: enlarge the fence critical section It is really easy to introduce subtle deadlocks in preempt_fence_work_func() since we operate on single global ordered-wq for signalling our preempt fences behind the scenes, so even though we signal a particular fence, everything in the callback should be in the fence critical section, since blocking in the callback will prevent other published fences from signalling. If we enlarge the fence critical section to cover the entire callback, then lockdep should be able to understand this better, and complain if we grab a sensitive lock like vm->lock, which is also held when waiting on preempt fences.
In the Linux kernel, the following vulnerability has been resolved: platform/x86: intel-vbtn: Protect ACPI notify handler against recursion Since commit e2ffcda16290 ("ACPI: OSL: Allow Notify () handlers to run on all CPUs") ACPI notify handlers like the intel-vbtn notify_handler() may run on multiple CPU cores racing with themselves. This race gets hit on Dell Venue 7140 tablets when undocking from the keyboard, causing the handler to try and register priv->switches_dev twice, as can be seen from the dev_info() message getting logged twice: [ 83.861800] intel-vbtn INT33D6:00: Registering Intel Virtual Switches input-dev after receiving a switch event [ 83.861858] input: Intel Virtual Switches as /devices/pci0000:00/0000:00:1f.0/PNP0C09:00/INT33D6:00/input/input17 [ 83.861865] intel-vbtn INT33D6:00: Registering Intel Virtual Switches input-dev after receiving a switch event After which things go seriously wrong: [ 83.861872] sysfs: cannot create duplicate filename '/devices/pci0000:00/0000:00:1f.0/PNP0C09:00/INT33D6:00/input/input17' ... [ 83.861967] kobject: kobject_add_internal failed for input17 with -EEXIST, don't try to register things with the same name in the same directory. [ 83.877338] BUG: kernel NULL pointer dereference, address: 0000000000000018 ... Protect intel-vbtn notify_handler() from racing with itself with a mutex to fix this.
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: move dpu_encoder's connector assignment to atomic_enable() For cases where the crtc's connectors_changed was set without enable/active getting toggled , there is an atomic_enable() call followed by an atomic_disable() but without an atomic_mode_set(). This results in a NULL ptr access for the dpu_encoder_get_drm_fmt() call in the atomic_enable() as the dpu_encoder's connector was cleared in the atomic_disable() but not re-assigned as there was no atomic_mode_set() call. Fix the NULL ptr access by moving the assignment for atomic_enable() and also use drm_atomic_get_new_connector_for_encoder() to get the connector from the atomic_state. Patchwork: https://patchwork.freedesktop.org/patch/606729/
In the Linux kernel, the following vulnerability has been resolved: smb/client: avoid possible NULL dereference in cifs_free_subrequest() Clang static checker (scan-build) warning: cifsglob.h:line 890, column 3 Access to field 'ops' results in a dereference of a null pointer. Commit 519be989717c ("cifs: Add a tracepoint to track credits involved in R/W requests") adds a check for 'rdata->server', and let clang throw this warning about NULL dereference. When 'rdata->credits.value != 0 && rdata->server == NULL' happens, add_credits_and_wake_if() will call rdata->server->ops->add_credits(). This will cause NULL dereference problem. Add a check for 'rdata->server' to avoid NULL dereference.
In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix missing workqueue destroy in xe_gt_pagefault On driver reload we never free up the memory for the pagefault and access counter workqueues. Add those destroy calls here. (cherry picked from commit 7586fc52b14e0b8edd0d1f8a434e0de2078b7b2b)
In the Linux kernel, the following vulnerability has been resolved: mm/vmalloc: fix page mapping if vm_area_alloc_pages() with high order fallback to order 0 The __vmap_pages_range_noflush() assumes its argument pages** contains pages with the same page shift. However, since commit e9c3cda4d86e ("mm, vmalloc: fix high order __GFP_NOFAIL allocations"), if gfp_flags includes __GFP_NOFAIL with high order in vm_area_alloc_pages() and page allocation failed for high order, the pages** may contain two different page shifts (high order and order-0). This could lead __vmap_pages_range_noflush() to perform incorrect mappings, potentially resulting in memory corruption. Users might encounter this as follows (vmap_allow_huge = true, 2M is for PMD_SIZE): kvmalloc(2M, __GFP_NOFAIL|GFP_X) __vmalloc_node_range_noprof(vm_flags=VM_ALLOW_HUGE_VMAP) vm_area_alloc_pages(order=9) ---> order-9 allocation failed and fallback to order-0 vmap_pages_range() vmap_pages_range_noflush() __vmap_pages_range_noflush(page_shift = 21) ----> wrong mapping happens We can remove the fallback code because if a high-order allocation fails, __vmalloc_node_range_noprof() will retry with order-0. Therefore, it is unnecessary to fallback to order-0 here. Therefore, fix this by removing the fallback code.
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix the null pointer dereference to ras_manager Check ras_manager before using it