In the Linux kernel, the following vulnerability has been resolved: lan966x: Fix crash when adding interface under a lag There is a crash when adding one of the lan966x interfaces under a lag interface. The issue can be reproduced like this: ip link add name bond0 type bond miimon 100 mode balance-xor ip link set dev eth0 master bond0 The reason is because when adding a interface under the lag it would go through all the ports and try to figure out which other ports are under that lag interface. And the issue is that lan966x can have ports that are NULL pointer as they are not probed. So then iterating over these ports it would just crash as they are NULL pointers. The fix consists in actually checking for NULL pointers before accessing something from the ports. Like we do in other places.
In the Linux kernel, the following vulnerability has been resolved: net: Only allow init netns to set default tcp cong to a restricted algo tcp_set_default_congestion_control() is netns-safe in that it writes to &net->ipv4.tcp_congestion_control, but it also sets ca->flags |= TCP_CONG_NON_RESTRICTED which is not namespaced. This has the unintended side-effect of changing the global net.ipv4.tcp_allowed_congestion_control sysctl, despite the fact that it is read-only: 97684f0970f6 ("net: Make tcp_allowed_congestion_control readonly in non-init netns") Resolve this netns "leak" by only allowing the init netns to set the default algorithm to one that is restricted. This restriction could be removed if tcp_allowed_congestion_control were namespace-ified in the future. This bug was uncovered with https://github.com/JonathonReinhart/linux-netns-sysctl-verify
In the Linux kernel, the following vulnerability has been resolved: jfs: fix slab-out-of-bounds Read in dtSearch Currently while searching for current page in the sorted entry table of the page there is a out of bound access. Added a bound check to fix the error. Dave: Set return code to -EIO
The sctp_v6_create_accept_sk function in net/sctp/ipv6.c in the Linux kernel through 4.11.1 mishandles inheritance, which allows local users to cause a denial of service or possibly have unspecified other impact via crafted system calls, a related issue to CVE-2017-8890.
An issue was discovered in fl_set_geneve_opt in net/sched/cls_flower.c in the Linux kernel before 6.3.7. It allows an out-of-bounds write in the flower classifier code via TCA_FLOWER_KEY_ENC_OPTS_GENEVE packets. This may result in denial of service or privilege escalation.
The tcp_v6_syn_recv_sock function in net/ipv6/tcp_ipv6.c in the Linux kernel through 4.11.1 mishandles inheritance, which allows local users to cause a denial of service or possibly have unspecified other impact via crafted system calls, a related issue to CVE-2017-8890.
The dccp_disconnect function in net/dccp/proto.c in the Linux kernel through 4.14.3 allows local users to gain privileges or cause a denial of service (use-after-free) via an AF_UNSPEC connect system call during the DCCP_LISTEN state.
In the Linux kernel, the following vulnerability has been resolved: HID: amd_sfh: free driver_data after destroying hid device HID driver callbacks aren't called anymore once hid_destroy_device() has been called. Hence, hid driver_data should be freed only after the hid_destroy_device() function returned as driver_data is used in several callbacks. I observed a crash with kernel 6.10.0 on my T14s Gen 3, after enabling KASAN to debug memory allocation, I got this output: [ 13.050438] ================================================================== [ 13.054060] BUG: KASAN: slab-use-after-free in amd_sfh_get_report+0x3ec/0x530 [amd_sfh] [ 13.054809] psmouse serio1: trackpoint: Synaptics TrackPoint firmware: 0x02, buttons: 3/3 [ 13.056432] Read of size 8 at addr ffff88813152f408 by task (udev-worker)/479 [ 13.060970] CPU: 5 PID: 479 Comm: (udev-worker) Not tainted 6.10.0-arch1-2 #1 893bb55d7f0073f25c46adbb49eb3785fefd74b0 [ 13.063978] Hardware name: LENOVO 21CQCTO1WW/21CQCTO1WW, BIOS R22ET70W (1.40 ) 03/21/2024 [ 13.067860] Call Trace: [ 13.069383] input: TPPS/2 Synaptics TrackPoint as /devices/platform/i8042/serio1/input/input8 [ 13.071486] <TASK> [ 13.071492] dump_stack_lvl+0x5d/0x80 [ 13.074870] snd_hda_intel 0000:33:00.6: enabling device (0000 -> 0002) [ 13.078296] ? amd_sfh_get_report+0x3ec/0x530 [amd_sfh 05f43221435b5205f734cd9da29399130f398a38] [ 13.082199] print_report+0x174/0x505 [ 13.085776] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 13.089367] ? srso_alias_return_thunk+0x5/0xfbef5 [ 13.093255] ? amd_sfh_get_report+0x3ec/0x530 [amd_sfh 05f43221435b5205f734cd9da29399130f398a38] [ 13.097464] kasan_report+0xc8/0x150 [ 13.101461] ? amd_sfh_get_report+0x3ec/0x530 [amd_sfh 05f43221435b5205f734cd9da29399130f398a38] [ 13.105802] amd_sfh_get_report+0x3ec/0x530 [amd_sfh 05f43221435b5205f734cd9da29399130f398a38] [ 13.110303] amdtp_hid_request+0xb8/0x110 [amd_sfh 05f43221435b5205f734cd9da29399130f398a38] [ 13.114879] ? srso_alias_return_thunk+0x5/0xfbef5 [ 13.119450] sensor_hub_get_feature+0x1d3/0x540 [hid_sensor_hub 3f13be3016ff415bea03008d45d99da837ee3082] [ 13.124097] hid_sensor_parse_common_attributes+0x4d0/0xad0 [hid_sensor_iio_common c3a5cbe93969c28b122609768bbe23efe52eb8f5] [ 13.127404] ? srso_alias_return_thunk+0x5/0xfbef5 [ 13.131925] ? __pfx_hid_sensor_parse_common_attributes+0x10/0x10 [hid_sensor_iio_common c3a5cbe93969c28b122609768bbe23efe52eb8f5] [ 13.136455] ? _raw_spin_lock_irqsave+0x96/0xf0 [ 13.140197] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 13.143602] ? devm_iio_device_alloc+0x34/0x50 [industrialio 3d261d5e5765625d2b052be40e526d62b1d2123b] [ 13.147234] ? srso_alias_return_thunk+0x5/0xfbef5 [ 13.150446] ? __devm_add_action+0x167/0x1d0 [ 13.155061] hid_gyro_3d_probe+0x120/0x7f0 [hid_sensor_gyro_3d 63da36a143b775846ab2dbb86c343b401b5e3172] [ 13.158581] ? srso_alias_return_thunk+0x5/0xfbef5 [ 13.161814] platform_probe+0xa2/0x150 [ 13.165029] really_probe+0x1e3/0x8a0 [ 13.168243] __driver_probe_device+0x18c/0x370 [ 13.171500] driver_probe_device+0x4a/0x120 [ 13.175000] __driver_attach+0x190/0x4a0 [ 13.178521] ? __pfx___driver_attach+0x10/0x10 [ 13.181771] bus_for_each_dev+0x106/0x180 [ 13.185033] ? __pfx__raw_spin_lock+0x10/0x10 [ 13.188229] ? __pfx_bus_for_each_dev+0x10/0x10 [ 13.191446] ? srso_alias_return_thunk+0x5/0xfbef5 [ 13.194382] bus_add_driver+0x29e/0x4d0 [ 13.197328] driver_register+0x1a5/0x360 [ 13.200283] ? __pfx_hid_gyro_3d_platform_driver_init+0x10/0x10 [hid_sensor_gyro_3d 63da36a143b775846ab2dbb86c343b401b5e3172] [ 13.203362] do_one_initcall+0xa7/0x380 [ 13.206432] ? __pfx_do_one_initcall+0x10/0x10 [ 13.210175] ? srso_alias_return_thunk+0x5/0xfbef5 [ 13.213211] ? kasan_unpoison+0x44/0x70 [ 13.216688] do_init_module+0x238/0x750 [ 13.2196 ---truncated---
Use-after-free vulnerability in fs/crypto/ in the Linux kernel before 4.10.7 allows local users to cause a denial of service (NULL pointer dereference) or possibly gain privileges by revoking keyring keys being used for ext4, f2fs, or ubifs encryption, causing cryptographic transform objects to be freed prematurely.
A use-after-free vulnerability in the Linux kernel's net/sched: cls_route component can be exploited to achieve local privilege escalation. When route4_change() is called on an existing filter, the whole tcf_result struct is always copied into the new instance of the filter. This causes a problem when updating a filter bound to a class, as tcf_unbind_filter() is always called on the old instance in the success path, decreasing filter_cnt of the still referenced class and allowing it to be deleted, leading to a use-after-free. We recommend upgrading past commit b80b829e9e2c1b3f7aae34855e04d8f6ecaf13c8.
The packet_set_ring function in net/packet/af_packet.c in the Linux kernel through 4.10.6 does not properly validate certain block-size data, which allows local users to cause a denial of service (integer signedness error and out-of-bounds write), or gain privileges (if the CAP_NET_RAW capability is held), via crafted system calls.
An out-of-bounds write vulnerability in the Linux kernel's net/sched: sch_qfq component can be exploited to achieve local privilege escalation. The qfq_change_agg() function in net/sched/sch_qfq.c allows an out-of-bounds write because lmax is updated according to packet sizes without bounds checks. We recommend upgrading past commit 3e337087c3b5805fe0b8a46ba622a962880b5d64.
In the Linux kernel, the following vulnerability has been resolved: tpm_tis_spi: Account for SPI header when allocating TPM SPI xfer buffer The TPM SPI transfer mechanism uses MAX_SPI_FRAMESIZE for computing the maximum transfer length and the size of the transfer buffer. As such, it does not account for the 4 bytes of header that prepends the SPI data frame. This can result in out-of-bounds accesses and was confirmed with KASAN. Introduce SPI_HDRSIZE to account for the header and use to allocate the transfer buffer.
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_ncm: Fix UAF ncm object at re-bind after usb ep transport error When ncm function is working and then stop usb0 interface for link down, eth_stop() is called. At this piont, accidentally if usb transport error should happen in usb_ep_enable(), 'in_ep' and/or 'out_ep' may not be enabled. After that, ncm_disable() is called to disable for ncm unbind but gether_disconnect() is never called since 'in_ep' is not enabled. As the result, ncm object is released in ncm unbind but 'dev->port_usb' associated to 'ncm->port' is not NULL. And when ncm bind again to recover netdev, ncm object is reallocated but usb0 interface is already associated to previous released ncm object. Therefore, once usb0 interface is up and eth_start_xmit() is called, released ncm object is dereferrenced and it might cause use-after-free memory. [function unlink via configfs] usb0: eth_stop dev->port_usb=ffffff9b179c3200 --> error happens in usb_ep_enable(). NCM: ncm_disable: ncm=ffffff9b179c3200 --> no gether_disconnect() since ncm->port.in_ep->enabled is false. NCM: ncm_unbind: ncm unbind ncm=ffffff9b179c3200 NCM: ncm_free: ncm free ncm=ffffff9b179c3200 <-- released ncm [function link via configfs] NCM: ncm_alloc: ncm alloc ncm=ffffff9ac4f8a000 NCM: ncm_bind: ncm bind ncm=ffffff9ac4f8a000 NCM: ncm_set_alt: ncm=ffffff9ac4f8a000 alt=0 usb0: eth_open dev->port_usb=ffffff9b179c3200 <-- previous released ncm usb0: eth_start dev->port_usb=ffffff9b179c3200 <-- eth_start_xmit() --> dev->wrap() Unable to handle kernel paging request at virtual address dead00000000014f This patch addresses the issue by checking if 'ncm->netdev' is not NULL at ncm_disable() to call gether_disconnect() to deassociate 'dev->port_usb'. It's more reasonable to check 'ncm->netdev' to call gether_connect/disconnect rather than check 'ncm->port.in_ep->enabled' since it might not be enabled but the gether connection might be established.
A possible unauthorized memory access flaw was found in the Linux kernel's cpu_entry_area mapping of X86 CPU data to memory, where a user may guess the location of exception stacks or other important data. Based on the previous CVE-2023-0597, the 'Randomize per-cpu entry area' feature was implemented in /arch/x86/mm/cpu_entry_area.c, which works through the init_cea_offsets() function when KASLR is enabled. However, despite this feature, there is still a risk of per-cpu entry area leaks. This issue could allow a local user to gain access to some important data with memory in an expected location and potentially escalate their privileges on the system.
An issue was discovered in aspeed_lpc_ctrl_mmap in drivers/soc/aspeed/aspeed-lpc-ctrl.c in the Linux kernel before 5.14.6. Local attackers able to access the Aspeed LPC control interface could overwrite memory in the kernel and potentially execute privileges, aka CID-b49a0e69a7b1. This occurs because a certain comparison uses values that are not memory sizes.
An out-of-bounds memory access flaw was found in the Linux kernel’s XFS file system in how a user restores an XFS image after failure (with a dirty log journal). This flaw allows a local user to crash or potentially escalate their privileges on the system.
The mm subsystem in the Linux kernel through 3.2 does not properly enforce the CONFIG_STRICT_DEVMEM protection mechanism, which allows local users to read or write to kernel memory locations in the first megabyte (and bypass slab-allocation access restrictions) via an application that opens the /dev/mem file, related to arch/x86/mm/init.c and drivers/char/mem.c.
In the Linux kernel, the following vulnerability has been resolved: net: fix use-after-free in tw_timer_handler A real world panic issue was found as follow in Linux 5.4. BUG: unable to handle page fault for address: ffffde49a863de28 PGD 7e6fe62067 P4D 7e6fe62067 PUD 7e6fe63067 PMD f51e064067 PTE 0 RIP: 0010:tw_timer_handler+0x20/0x40 Call Trace: <IRQ> call_timer_fn+0x2b/0x120 run_timer_softirq+0x1ef/0x450 __do_softirq+0x10d/0x2b8 irq_exit+0xc7/0xd0 smp_apic_timer_interrupt+0x68/0x120 apic_timer_interrupt+0xf/0x20 This issue was also reported since 2017 in the thread [1], unfortunately, the issue was still can be reproduced after fixing DCCP. The ipv4_mib_exit_net is called before tcp_sk_exit_batch when a net namespace is destroyed since tcp_sk_ops is registered befrore ipv4_mib_ops, which means tcp_sk_ops is in the front of ipv4_mib_ops in the list of pernet_list. There will be a use-after-free on net->mib.net_statistics in tw_timer_handler after ipv4_mib_exit_net if there are some inflight time-wait timers. This bug is not introduced by commit f2bf415cfed7 ("mib: add net to NET_ADD_STATS_BH") since the net_statistics is a global variable instead of dynamic allocation and freeing. Actually, commit 61a7e26028b9 ("mib: put net statistics on struct net") introduces the bug since it put net statistics on struct net and free it when net namespace is destroyed. Moving init_ipv4_mibs() to the front of tcp_init() to fix this bug and replace pr_crit() with panic() since continuing is meaningless when init_ipv4_mibs() fails. [1] https://groups.google.com/g/syzkaller/c/p1tn-_Kc6l4/m/smuL_FMAAgAJ?pli=1
drivers/char/virtio_console.c in the Linux kernel 4.9.x and 4.10.x before 4.10.12 interacts incorrectly with the CONFIG_VMAP_STACK option, which allows local users to cause a denial of service (system crash or memory corruption) or possibly have unspecified other impact by leveraging use of more than one virtual page for a DMA scatterlist.
A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation. Flaw in the error handling of bound chains causes a use-after-free in the abort path of NFT_MSG_NEWRULE. The vulnerability requires CAP_NET_ADMIN to be triggered. We recommend upgrading past commit 4bedf9eee016286c835e3d8fa981ddece5338795.
The brcmf_cfg80211_mgmt_tx function in drivers/net/wireless/broadcom/brcm80211/brcmfmac/cfg80211.c in the Linux kernel before 4.12.3 allows local users to cause a denial of service (buffer overflow and system crash) or possibly gain privileges via a crafted NL80211_CMD_FRAME Netlink packet.
drivers/media/usb/dvb-usb/dw2102.c in the Linux kernel 4.9.x and 4.10.x before 4.10.4 interacts incorrectly with the CONFIG_VMAP_STACK option, which allows local users to cause a denial of service (system crash or memory corruption) or possibly have unspecified other impact by leveraging use of more than one virtual page for a DMA scatterlist.
drivers/media/usb/dvb-usb-v2/dvb_usb_core.c in the Linux kernel 4.9.x and 4.10.x before 4.10.12 interacts incorrectly with the CONFIG_VMAP_STACK option, which allows local users to cause a denial of service (system crash or memory corruption) or possibly have unspecified other impact by leveraging use of more than one virtual page for a DMA scatterlist.
The ip_cmsg_recv_checksum function in net/ipv4/ip_sockglue.c in the Linux kernel before 4.10.1 has incorrect expectations about skb data layout, which allows local users to cause a denial of service (buffer over-read) or possibly have unspecified other impact via crafted system calls, as demonstrated by use of the MSG_MORE flag in conjunction with loopback UDP transmission.
In the Linux kernel, the following vulnerability has been resolved: initramfs: avoid filename buffer overrun The initramfs filename field is defined in Documentation/driver-api/early-userspace/buffer-format.rst as: 37 cpio_file := ALGN(4) + cpio_header + filename + "\0" + ALGN(4) + data ... 55 ============= ================== ========================= 56 Field name Field size Meaning 57 ============= ================== ========================= ... 70 c_namesize 8 bytes Length of filename, including final \0 When extracting an initramfs cpio archive, the kernel's do_name() path handler assumes a zero-terminated path at @collected, passing it directly to filp_open() / init_mkdir() / init_mknod(). If a specially crafted cpio entry carries a non-zero-terminated filename and is followed by uninitialized memory, then a file may be created with trailing characters that represent the uninitialized memory. The ability to create an initramfs entry would imply already having full control of the system, so the buffer overrun shouldn't be considered a security vulnerability. Append the output of the following bash script to an existing initramfs and observe any created /initramfs_test_fname_overrunAA* path. E.g. ./reproducer.sh | gzip >> /myinitramfs It's easiest to observe non-zero uninitialized memory when the output is gzipped, as it'll overflow the heap allocated @out_buf in __gunzip(), rather than the initrd_start+initrd_size block. ---- reproducer.sh ---- nilchar="A" # change to "\0" to properly zero terminate / pad magic="070701" ino=1 mode=$(( 0100777 )) uid=0 gid=0 nlink=1 mtime=1 filesize=0 devmajor=0 devminor=1 rdevmajor=0 rdevminor=0 csum=0 fname="initramfs_test_fname_overrun" namelen=$(( ${#fname} + 1 )) # plus one to account for terminator printf "%s%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%s" \ $magic $ino $mode $uid $gid $nlink $mtime $filesize \ $devmajor $devminor $rdevmajor $rdevminor $namelen $csum $fname termpadlen=$(( 1 + ((4 - ((110 + $namelen) & 3)) % 4) )) printf "%.s${nilchar}" $(seq 1 $termpadlen) ---- reproducer.sh ---- Symlink filename fields handled in do_symlink() won't overrun past the data segment, due to the explicit zero-termination of the symlink target. Fix filename buffer overrun by aborting the initramfs FSM if any cpio entry doesn't carry a zero-terminator at the expected (name_len - 1) offset.
An issue was discovered in the Linux kernel before 5.14.8. A use-after-free in selinux_ptrace_traceme (aka the SELinux handler for PTRACE_TRACEME) could be used by local attackers to cause memory corruption and escalate privileges, aka CID-a3727a8bac0a. This occurs because of an attempt to access the subjective credentials of another task.
The sg_ioctl function in drivers/scsi/sg.c in the Linux kernel through 4.10.4 allows local users to cause a denial of service (stack-based buffer overflow) or possibly have unspecified other impact via a large command size in an SG_NEXT_CMD_LEN ioctl call, leading to out-of-bounds write access in the sg_write function.
The xfrm_replay_verify_len function in net/xfrm/xfrm_user.c in the Linux kernel through 4.10.6 does not validate certain size data after an XFRM_MSG_NEWAE update, which allows local users to obtain root privileges or cause a denial of service (heap-based out-of-bounds access) by leveraging the CAP_NET_ADMIN capability, as demonstrated during a Pwn2Own competition at CanSecWest 2017 for the Ubuntu 16.10 linux-image-* package 4.8.0.41.52.
Integer overflow in the vc4_get_bcl function in drivers/gpu/drm/vc4/vc4_gem.c in the VideoCore DRM driver in the Linux kernel before 4.9.7 allows local users to cause a denial of service or possibly have unspecified other impact via a crafted size value in a VC4_SUBMIT_CL ioctl call.
A flaw use after free in the Linux kernel Xircom 16-bit PCMCIA (PC-card) Ethernet driver was found.A local user could use this flaw to crash the system or potentially escalate their privileges on the system.
The do_shmat function in ipc/shm.c in the Linux kernel through 4.9.12 does not restrict the address calculated by a certain rounding operation, which allows local users to map page zero, and consequently bypass a protection mechanism that exists for the mmap system call, by making crafted shmget and shmat system calls in a privileged context.
Linux Kernel nftables Out-Of-Bounds Read/Write Vulnerability; nft_byteorder poorly handled vm register contents when CAP_NET_ADMIN is in any user or network namespace
A use-after-free vulnerability was found in the Linux kernel's netfilter subsystem in net/netfilter/nf_tables_api.c. Mishandled error handling with NFT_MSG_NEWRULE makes it possible to use a dangling pointer in the same transaction causing a use-after-free vulnerability. This flaw allows a local attacker with user access to cause a privilege escalation issue. We recommend upgrading past commit 1240eb93f0616b21c675416516ff3d74798fdc97.
A use-after-free vulnerability in the Linux Kernel io_uring subsystem can be exploited to achieve local privilege escalation. Racing a io_uring cancel poll request with a linked timeout can cause a UAF in a hrtimer. We recommend upgrading past commit ef7dfac51d8ed961b742218f526bd589f3900a59 (4716c73b188566865bdd79c3a6709696a224ac04 for 5.10 stable and 0e388fce7aec40992eadee654193cad345d62663 for 5.15 stable).
In Ubuntu's accountsservice an unprivileged local attacker can trigger a use-after-free vulnerability in accountsservice by sending a D-Bus message to the accounts-daemon process.
crypto/pcrypt.c in the Linux kernel before 4.14.13 mishandles freeing instances, allowing a local user able to access the AF_ALG-based AEAD interface (CONFIG_CRYPTO_USER_API_AEAD) and pcrypt (CONFIG_CRYPTO_PCRYPT) to cause a denial of service (kfree of an incorrect pointer) or possibly have unspecified other impact by executing a crafted sequence of system calls.
An issue was discovered in net/ipv6/ip6mr.c in the Linux kernel before 4.11. By setting a specific socket option, an attacker can control a pointer in kernel land and cause an inet_csk_listen_stop general protection fault, or potentially execute arbitrary code under certain circumstances. The issue can be triggered as root (e.g., inside a default LXC container or with the CAP_NET_ADMIN capability) or after namespace unsharing. This occurs because sk_type and protocol are not checked in the appropriate part of the ip6_mroute_* functions. NOTE: this affects Linux distributions that use 4.9.x longterm kernels before 4.9.187.
The HMAC implementation (crypto/hmac.c) in the Linux kernel before 4.14.8 does not validate that the underlying cryptographic hash algorithm is unkeyed, allowing a local attacker able to use the AF_ALG-based hash interface (CONFIG_CRYPTO_USER_API_HASH) and the SHA-3 hash algorithm (CONFIG_CRYPTO_SHA3) to cause a kernel stack buffer overflow by executing a crafted sequence of system calls that encounter a missing SHA-3 initialization.
In Zsh before 5.8, attackers able to execute commands can regain privileges dropped by the --no-PRIVILEGED option. Zsh fails to overwrite the saved uid, so the original privileges can be restored by executing MODULE_PATH=/dir/with/module zmodload with a module that calls setuid().
kernel/bpf/verifier.c in the Linux kernel through 4.14.8 allows local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging incorrect BPF_RSH signed bounds calculations.
An issue was discovered in the Linux kernel before 4.14.11. A double free may be caused by the function allocate_trace_buffer in the file kernel/trace/trace.c.
In the Linux kernel, the following vulnerability has been resolved: ata: libata-core: Fix double free on error If e.g. the ata_port_alloc() call in ata_host_alloc() fails, we will jump to the err_out label, which will call devres_release_group(). devres_release_group() will trigger a call to ata_host_release(). ata_host_release() calls kfree(host), so executing the kfree(host) in ata_host_alloc() will lead to a double free: kernel BUG at mm/slub.c:553! Oops: invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 11 PID: 599 Comm: (udev-worker) Not tainted 6.10.0-rc5 #47 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:kfree+0x2cf/0x2f0 Code: 5d 41 5e 41 5f 5d e9 80 d6 ff ff 4d 89 f1 41 b8 01 00 00 00 48 89 d9 48 89 da RSP: 0018:ffffc90000f377f0 EFLAGS: 00010246 RAX: ffff888112b1f2c0 RBX: ffff888112b1f2c0 RCX: ffff888112b1f320 RDX: 000000000000400b RSI: ffffffffc02c9de5 RDI: ffff888112b1f2c0 RBP: ffffc90000f37830 R08: 0000000000000000 R09: 0000000000000000 R10: ffffc90000f37610 R11: 617461203a736b6e R12: ffffea00044ac780 R13: ffff888100046400 R14: ffffffffc02c9de5 R15: 0000000000000006 FS: 00007f2f1cabe980(0000) GS:ffff88813b380000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2f1c3acf75 CR3: 0000000111724000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> ? __die_body.cold+0x19/0x27 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x6a/0x90 ? kfree+0x2cf/0x2f0 ? exc_invalid_op+0x50/0x70 ? kfree+0x2cf/0x2f0 ? asm_exc_invalid_op+0x1a/0x20 ? ata_host_alloc+0xf5/0x120 [libata] ? ata_host_alloc+0xf5/0x120 [libata] ? kfree+0x2cf/0x2f0 ata_host_alloc+0xf5/0x120 [libata] ata_host_alloc_pinfo+0x14/0xa0 [libata] ahci_init_one+0x6c9/0xd20 [ahci] Ensure that we will not call kfree(host) twice, by performing the kfree() only if the devres_open_group() call failed.
In the Linux kernel through 6.3.1, a use-after-free in Netfilter nf_tables when processing batch requests can be abused to perform arbitrary read and write operations on kernel memory. Unprivileged local users can obtain root privileges. This occurs because anonymous sets are mishandled.
In drivers/net/ethernet/hisilicon/hns/hns_enet.c in the Linux kernel before 4.13, local users can cause a denial of service (use-after-free and BUG) or possibly have unspecified other impact by leveraging differences in skb handling between hns_nic_net_xmit_hw and hns_nic_net_xmit.
kernel/bpf/verifier.c in the Linux kernel through 4.14.8 allows local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging the lack of stack-pointer alignment enforcement.
The Salsa20 encryption algorithm in the Linux kernel before 4.14.8 does not correctly handle zero-length inputs, allowing a local attacker able to use the AF_ALG-based skcipher interface (CONFIG_CRYPTO_USER_API_SKCIPHER) to cause a denial of service (uninitialized-memory free and kernel crash) or have unspecified other impact by executing a crafted sequence of system calls that use the blkcipher_walk API. Both the generic implementation (crypto/salsa20_generic.c) and x86 implementation (arch/x86/crypto/salsa20_glue.c) of Salsa20 were vulnerable.
In the Linux kernel, the following vulnerability has been resolved: ftrace: Fix use-after-free for dynamic ftrace_ops KASAN reported a use-after-free with ftrace ops [1]. It was found from vmcore that perf had registered two ops with the same content successively, both dynamic. After unregistering the second ops, a use-after-free occurred. In ftrace_shutdown(), when the second ops is unregistered, the FTRACE_UPDATE_CALLS command is not set because there is another enabled ops with the same content. Also, both ops are dynamic and the ftrace callback function is ftrace_ops_list_func, so the FTRACE_UPDATE_TRACE_FUNC command will not be set. Eventually the value of 'command' will be 0 and ftrace_shutdown() will skip the rcu synchronization. However, ftrace may be activated. When the ops is released, another CPU may be accessing the ops. Add the missing synchronization to fix this problem. [1] BUG: KASAN: use-after-free in __ftrace_ops_list_func kernel/trace/ftrace.c:7020 [inline] BUG: KASAN: use-after-free in ftrace_ops_list_func+0x2b0/0x31c kernel/trace/ftrace.c:7049 Read of size 8 at addr ffff56551965bbc8 by task syz-executor.2/14468 CPU: 1 PID: 14468 Comm: syz-executor.2 Not tainted 5.10.0 #7 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x0/0x40c arch/arm64/kernel/stacktrace.c:132 show_stack+0x30/0x40 arch/arm64/kernel/stacktrace.c:196 __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1b4/0x248 lib/dump_stack.c:118 print_address_description.constprop.0+0x28/0x48c mm/kasan/report.c:387 __kasan_report mm/kasan/report.c:547 [inline] kasan_report+0x118/0x210 mm/kasan/report.c:564 check_memory_region_inline mm/kasan/generic.c:187 [inline] __asan_load8+0x98/0xc0 mm/kasan/generic.c:253 __ftrace_ops_list_func kernel/trace/ftrace.c:7020 [inline] ftrace_ops_list_func+0x2b0/0x31c kernel/trace/ftrace.c:7049 ftrace_graph_call+0x0/0x4 __might_sleep+0x8/0x100 include/linux/perf_event.h:1170 __might_fault mm/memory.c:5183 [inline] __might_fault+0x58/0x70 mm/memory.c:5171 do_strncpy_from_user lib/strncpy_from_user.c:41 [inline] strncpy_from_user+0x1f4/0x4b0 lib/strncpy_from_user.c:139 getname_flags+0xb0/0x31c fs/namei.c:149 getname+0x2c/0x40 fs/namei.c:209 [...] Allocated by task 14445: kasan_save_stack+0x24/0x50 mm/kasan/common.c:48 kasan_set_track mm/kasan/common.c:56 [inline] __kasan_kmalloc mm/kasan/common.c:479 [inline] __kasan_kmalloc.constprop.0+0x110/0x13c mm/kasan/common.c:449 kasan_kmalloc+0xc/0x14 mm/kasan/common.c:493 kmem_cache_alloc_trace+0x440/0x924 mm/slub.c:2950 kmalloc include/linux/slab.h:563 [inline] kzalloc include/linux/slab.h:675 [inline] perf_event_alloc.part.0+0xb4/0x1350 kernel/events/core.c:11230 perf_event_alloc kernel/events/core.c:11733 [inline] __do_sys_perf_event_open kernel/events/core.c:11831 [inline] __se_sys_perf_event_open+0x550/0x15f4 kernel/events/core.c:11723 __arm64_sys_perf_event_open+0x6c/0x80 kernel/events/core.c:11723 [...] Freed by task 14445: kasan_save_stack+0x24/0x50 mm/kasan/common.c:48 kasan_set_track+0x24/0x34 mm/kasan/common.c:56 kasan_set_free_info+0x20/0x40 mm/kasan/generic.c:358 __kasan_slab_free.part.0+0x11c/0x1b0 mm/kasan/common.c:437 __kasan_slab_free mm/kasan/common.c:445 [inline] kasan_slab_free+0x2c/0x40 mm/kasan/common.c:446 slab_free_hook mm/slub.c:1569 [inline] slab_free_freelist_hook mm/slub.c:1608 [inline] slab_free mm/slub.c:3179 [inline] kfree+0x12c/0xc10 mm/slub.c:4176 perf_event_alloc.part.0+0xa0c/0x1350 kernel/events/core.c:11434 perf_event_alloc kernel/events/core.c:11733 [inline] __do_sys_perf_event_open kernel/events/core.c:11831 [inline] __se_sys_perf_event_open+0x550/0x15f4 kernel/events/core.c:11723 [...]
kernel/bpf/verifier.c in the Linux kernel through 4.14.8 allows local users to cause a denial of service (memory corruption) or possibly have unspecified other impact by leveraging improper use of pointers in place of scalars.
drivers/input/serio/i8042.c in the Linux kernel before 4.12.4 allows attackers to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact because the port->exists value can change after it is validated.