TP-Link WR886N 3.0 1.0.1 Build 150127 Rel.34123n is vulnerable to Buffer Overflow. Authenticated attackers can crash router httpd services via /userRpm/PingIframeRpm.htm request which contains redundant & in parameter.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for protocol wan wan_rate.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for wlan_access name.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for ddns phddns username.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for firewall dmz enable.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for ip_mac_bind name.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for hosts_info set_block_flag up_limit.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for firewall lan_manage mac2.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for wireless wlan_wds_2g ssid.
httpd on TP-Link TL-WPA4220 devices (hardware versions 2 through 4) allows remote authenticated users to trigger a buffer overflow (causing a denial of service) by sending a POST request to the /admin/syslog endpoint. Fixed version: TL-WPA4220(EU)_V4_201023
Stack-based buffer overflow in TP-Link TL-WA850RE Wi-Fi Range Extender with hardware version 5 allows remote authenticated users to cause a denial of service (outage) via a long type parameter to /data/syslog.filter.json.
The ping feature in the Diagnostic functionality on TP-LINK WR840N v2 Firmware 3.16.9 Build 150701 Rel.51516n devices allows remote attackers to cause a denial of service (HTTP service termination) by modifying the packet size to be higher than the UI limit of 1472.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for dhcpd udhcpd enable.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for hosts_info para sun.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for wireless wlan_host_2g power.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for time_switch name.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for wireless wlan_host_2g isolate.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for wireless wlan_host_2g bandwidth.
An issue was discovered on TP-Link TL-WR886N 6.0 2.3.4 and TL-WR886N 7.0 1.1.0 devices. Authenticated attackers can crash router services (e.g., inetd, HTTP, DNS, and UPnP) via long JSON data for reboot_timer name.
TP-Link C2 and C20i devices through firmware 0.9.1 4.2 v0032.0 Build 160706 Rel.37961n allow DoSing the HTTP server via a crafted Cookie header to the /cgi/ansi URI.
TP-Link Omada ER605 Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of TP-Link Omada ER605 routers. Authentication is not required to exploit this vulnerability. However, devices are vulnerable only if configured to use the Comexe DDNS service. The specific flaw exists within the handling of DDNS error codes. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-22522.
This vulnerability allows remote attackers to execute arbitrary code on affected installations of TP-Link Archer C90 1.0.6 Build 20200114 rel.73164(5553) routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of DNS responses. A crafted DNS message can trigger an overflow of a fixed-length, stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-14655.
A vulnerability, which was classified as critical, has been found in TP-Link VN020 F3v(T) TT_V6.2.1021. Affected by this issue is some unknown functionality of the component DHCP DISCOVER Packet Parser. The manipulation of the argument hostname leads to stack-based buffer overflow. The attack may be launched remotely. The exploit has been disclosed to the public and may be used.
TP-Link Archer A54 libcmm.so dm_fillObjByStr Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of TP-Link Archer A54 routers. Authentication is required to exploit this vulnerability. The specific flaw exists within the file libcmm.so. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-22262.
TP-Link Tapo C210 ActiveCells Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of TP-Link Tapo C210 IP cameras. Although authentication is required to exploit this vulnerability, the existing authentication mechanism can be bypassed. The specific flaw exists within the handling of the ActiveCells parameter of the CreateRules and ModifyRules APIs. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20589.
A memory corruption vulnerability exists in the web interface functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted HTTP POST request can lead to denial of service of the device's web interface. An attacker can send an unauthenticated HTTP POST request to trigger this vulnerability.
A stack-based buffer overflow vulnerability exists in the web interface Radio Scheduling functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.This vulnerability refers specifically to the overflow that occurs via the `band` parameter at offset `0x0045aad8` of the `httpd_portal` binary shipped with v5.1.0 Build 20220926 of the EAP225.
A stack-based buffer overflow vulnerability exists in the web interface Radio Scheduling functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.This vulnerability refers specifically to the overflow that occurs via the `ssid` parameter at offset `0x42247c` of the `httpd` binary shipped with v5.0.4 Build 20220216 of the EAP115.
A stack-based buffer overflow vulnerability exists in the web interface Radio Scheduling functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.This vulnerability refers specifically to the overflow that occurs via the `ssid` parameter at offset `0x0045ab7c` of the `httpd_portal` binary shipped with v5.1.0 Build 20220926 of the EAP225.
A stack-based buffer overflow vulnerability exists in the web interface Radio Scheduling functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.This vulnerability refers specifically to the overflow that occurs via the `profile` parameter at offset `0x0045abc8` of the `httpd_portal` binary shipped with v5.1.0 Build 20220926 of the EAP225.
A stack-based buffer overflow vulnerability exists in the web interface Radio Scheduling functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.This vulnerability refers specifically to the overflow that occurs via the `band` parameter at offset `0x422420` of the `httpd` binary shipped with v5.0.4 Build 20220216 of the EAP115.
A stack-based buffer overflow vulnerability exists in the web interface Radio Scheduling functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.This vulnerability refers specifically to the overflow that occurs via the `action` parameter at offset `0x0045ab38` of the `httpd_portal` binary shipped with v5.1.0 Build 20220926 of the EAP225.
A stack-based buffer overflow vulnerability exists in the web interface Radio Scheduling functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.This vulnerability refers specifically to the overflow that occurs via the `profile` parameter at offset `0x4224b0` of the `httpd` binary shipped with v5.0.4 Build 20220216 of the EAP115.
A stack-based buffer overflow vulnerability exists in the web interface Radio Scheduling functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.This vulnerability refers specifically to the overflow that occurs via the `action` parameter at offset `0x422448` of the `httpd` binary shipped with v5.0.4 Build 20220216 of the EAP115.
TP-Link Archer AX21 tdpServer Logging Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of TP-Link Archer AX21 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the logging functionality of the tdpServer program, which listens on UDP port 20002. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-19898.
TP-Link AX1800 Firmware Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of TP-Link AX1800 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the parsing of firmware images. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-19703.
TP-Link Archer AX21 tmpServer Command 0x422 Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of TP-Link Archer AX21 routers. Authentication is required to exploit this vulnerability. The specific flaw exists within the handling of command 0x422 provided to the tmpServer service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-19905.
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of TP-Link Archer A7 AC1750 1.0.15 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of MAC addresses by the tdpServer endpoint. A crafted TCP message can write stack pointers to the stack. An attacker can leverage this vulnerability to execute code in the context of the root user. Was ZDI-CAN-12306.
TP-Link Omada ER605 DHCPv6 Client Options Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of TP-Link Omada ER605 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of DHCP options. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-22420.
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of TP-Link TL-WR940N 3.20.1 Build 200316 Rel.34392n (5553) routers. Authentication is required to exploit this vulnerability. The specific flaw exists within the httpd service, which listens on TCP port 80 by default. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-13992.
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of TP-Link TL-WR940N 3.20.1 Build 200316 Rel.34392n (5553) routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the parsing of file name extensions. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-13910.
TP-Link TL-WR902AC dm_fillObjByStr Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of TP-Link TL-WR902AC routers. Authentication is required to exploit this vulnerability. The specific flaw exists within the libcmm.so module. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-21819.
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of TP-Link TL-WR940N 3.20.1 Build 200316 Rel.34392n (5553) routers. Authentication is required to exploit this vulnerability. The specific flaw exists within the httpd service, which listens on TCP port 80 by default. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-13993.
This vulnerability allows remote attackers to execute arbitrary code on affected installations of TP-Link Archer A7 Firmware Ver: 190726 AC1750 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of DNS responses. A crafted DNS message can trigger an overflow of a fixed-length, stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the root user. Was ZDI-CAN-9660.
TP-Link WR941ND V6 has a stack overflow vulnerability in the ssid parameter in /userRpm/popupSiteSurveyRpm.htm.
TP-Link WR740N V6 has a stack overflow vulnerability via the ssid parameter in /userRpm/popupSiteSurveyRpm.htm url.
This vulnerability allows remote attackers to execute arbitrary code on affected installations of TP-Link TL-WA1201 1.0.1 Build 20200709 rel.66244(5553) wireless access points. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of DNS responses. A crafted DNS message can trigger an overflow of a fixed-length, stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-14656.
IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 10.5.0.0 through 10.5.0.11, 11.1.0 through 11.1.4.7, 11.5.0 through 11.5.9, and 12.1.0 through 12.1.2 is vulnerable to a denial of service as the server may crash under certain conditions with a specially crafted query.
IBM Db2 for Linux, UNIX and Windows (includes DB2 Connect Server) 11.1.0 through 11.1.4.7, 11.5.0 through 11.5.9 and 12.1.0 through 12.1.1 is vulnerable to a denial of service as the server may crash under certain conditions with a specially crafted query.
It may be possible to have an extremely long aggregation pipeline in conjunction with a specific stage/operator and cause a stack overflow due to the size of the stack frames used by that stage. If an attacker could cause such an aggregation to occur, they could maliciously crash MongoDB in a DoS attack. This vulnerability affects MongoDB Server v4.4 versions prior to and including 4.4.28, MongoDB Server v5.0 versions prior to 5.0.4 and MongoDB Server v4.2 versions prior to 4.2.16. Workaround: >= v4.2.16 users and all v4.4 users can add the --setParameter internalPipelineLengthLimit=50 instead of the default 1000 to mongod at startup to prevent a crash.