A flaw was found in grub2. When performing a symlink lookup from a reiserfs filesystem, grub's reiserfs fs module uses user-controlled parameters from the filesystem geometry to determine the internal buffer size, however, it improperly checks for integer overflows. A maliciouly crafted filesystem may lead some of those buffer size calculations to overflow, causing it to perform a grub_malloc() operation with a smaller size than expected. As a result, the grub_reiserfs_read_symlink() will call grub_reiserfs_read_real() with a overflown length parameter, leading to a heap based out-of-bounds write during data reading. This flaw may be leveraged to corrupt grub's internal critical data and can result in arbitrary code execution, by-passing secure boot protections.
A flaw was found in grub2. When performing a symlink lookup, the grub's UFS module checks the inode's data size to allocate the internal buffer to read the file content, however, it fails to check if the symlink data size has overflown. When this occurs, grub_malloc() may be called with a smaller value than needed. When further reading the data from the disk into the buffer, the grub_ufs_lookup_symlink() function will write past the end of the allocated size. An attack can leverage this by crafting a malicious filesystem, and as a result, it will corrupt data stored in the heap, allowing for arbitrary code execution used to by-pass secure boot mechanisms.
A flaw was found in grub2. When reading data from a jfs filesystem, grub's jfs filesystem module uses user-controlled parameters from the filesystem geometry to determine the internal buffer size, however, it improperly checks for integer overflows. A maliciouly crafted filesystem may lead some of those buffer size calculations to overflow, causing it to perform a grub_malloc() operation with a smaller size than expected. As a result, the grub_jfs_lookup_symlink() function will write past the internal buffer length during grub_jfs_read_file(). This issue can be leveraged to corrupt grub's internal critical data and may result in arbitrary code execution, by-passing secure boot protections.
If certificates that signed grub are installed into db, grub can be booted directly. It will then boot any kernel without signature validation. The booted kernel will think it was booted in secureboot mode and will implement lockdown, yet it could have been tampered. This flaw is a reintroduction of CVE-2020-15705 and only affects grub2 versions prior to 2.06 and upstream and distributions using the shim_lock mechanism.
A bug in QEMU could cause a guest I/O operation otherwise addressed to an arbitrary disk offset to be targeted to offset 0 instead (potentially overwriting the VM's boot code). This could be used, for example, by L2 guests with a virtual disk (vdiskL2) stored on a virtual disk of an L1 (vdiskL1) hypervisor to read and/or write data to LBA 0 of vdiskL1, potentially gaining control of L1 at its next reboot.
There's a use-after-free vulnerability in grub_cmd_chainloader() function; The chainloader command is used to boot up operating systems that doesn't support multiboot and do not have direct support from GRUB2. When executing chainloader more than once a use-after-free vulnerability is triggered. If an attacker can control the GRUB2's memory allocation pattern sensitive data may be exposed and arbitrary code execution can be achieved.
GRUB2 fails to validate kernel signature when booted directly without shim, allowing secure boot to be bypassed. This only affects systems where the kernel signing certificate has been imported directly into the secure boot database and the GRUB image is booted directly without the use of shim. This issue affects GRUB2 version 2.04 and prior versions.
GRUB2 contains a race condition in grub_script_function_create() leading to a use-after-free vulnerability which can be triggered by redefining a function whilst the same function is already executing, leading to arbitrary code execution and secure boot restriction bypass. This issue affects GRUB2 version 2.04 and prior versions.
Integer overflows were discovered in the functions grub_cmd_initrd and grub_initrd_init in the efilinux component of GRUB2, as shipped in Debian, Red Hat, and Ubuntu (the functionality is not included in GRUB2 upstream), leading to a heap-based buffer overflow. These could be triggered by an extremely large number of arguments to the initrd command on 32-bit architectures, or a crafted filesystem with very large files on any architecture. An attacker could use this to execute arbitrary code and bypass UEFI Secure Boot restrictions. This issue affects GRUB2 version 2.04 and prior versions.
A flaw was found in command/gpg. In some scenarios, hooks created by loaded modules are not removed when the related module is unloaded. This flaw allows an attacker to force grub2 to call the hooks once the module that registered it was unloaded, leading to a use-after-free vulnerability. If correctly exploited, this vulnerability may result in arbitrary code execution, eventually allowing the attacker to bypass secure boot protections.
When reading data from disk, the grub's UDF filesystem module utilizes the user controlled data length metadata to allocate its internal buffers. In certain scenarios, while iterating through disk sectors, it assumes the read size from the disk is always smaller than the allocated buffer size which is not guaranteed. A crafted filesystem image may lead to a heap-based buffer overflow resulting in critical data to be corrupted, resulting in the risk of arbitrary code execution by-passing secure boot protections.
In grub2 versions before 2.06 the grub memory allocator doesn't check for possible arithmetic overflows on the requested allocation size. This leads the function to return invalid memory allocations which can be further used to cause possible integrity, confidentiality and availability impacts during the boot process.
There is a use-after-free in kernel versions before 5.5 due to a race condition between the release of ptp_clock and cdev while resource deallocation. When a (high privileged) process allocates a ptp device file (like /dev/ptpX) and voluntarily goes to sleep. During this time if the underlying device is removed, it can cause an exploitable condition as the process wakes up to terminate and clean all attached files. The system crashes due to the cdev structure being invalid (as already freed) which is pointed to by the inode.
A use-after-free flaw was found in nfc_llcp_find_local in net/nfc/llcp_core.c in NFC in the Linux kernel. This flaw allows a local user with special privileges to impact a kernel information leak issue.
A race condition was found in the QXL driver in the Linux kernel. The qxl_mode_dumb_create() function dereferences the qobj returned by the qxl_gem_object_create_with_handle(), but the handle is the only one holding a reference to it. This flaw allows an attacker to guess the returned handle value and trigger a use-after-free issue, potentially leading to a denial of service or privilege escalation.
ncurses before 6.4 20230408, when used by a setuid application, allows local users to trigger security-relevant memory corruption via malformed data in a terminfo database file that is found in $HOME/.terminfo or reached via the TERMINFO or TERM environment variable.
A heap based buffer overflow vulnerability exists in GNU LibreDWG 0.10 via read_2004_compressed_section ../../src/decode.c:2417.
A vulnerability was found in Perl. This security issue occurs while Perl for Windows relies on the system path environment variable to find the shell (`cmd.exe`). When running an executable that uses the Windows Perl interpreter, Perl attempts to find and execute `cmd.exe` within the operating system. However, due to path search order issues, Perl initially looks for cmd.exe in the current working directory. This flaw allows an attacker with limited privileges to place`cmd.exe` in locations with weak permissions, such as `C:\ProgramData`. By doing so, arbitrary code can be executed when an administrator attempts to use this executable from these compromised locations.
LibreDWG 0.12.4.4313 through 0.12.4.4367 has an out-of-bounds write in dwg_free_BLOCK_private (called from dwg_free_BLOCK and dwg_free_object).
Heap-based Buffer Overflow in function bfd_getl32 in Binutils objdump 3.37.
GnuTLS before 2017-02-20 has an out-of-bounds write caused by an integer overflow and heap-based buffer overflow related to the cdk_pkt_read function in opencdk/read-packet.c. This issue (which is a subset of the vendor's GNUTLS-SA-2017-3 report) is fixed in 3.5.10.
Two errors in the "asn1_find_node()" function (lib/parser_aux.c) within GnuTLS libtasn1 version 4.10 can be exploited to cause a stacked-based buffer overflow by tricking a user into processing a specially crafted assignments file via the e.g. asn1Coding utility.
A heap buffer overflow was discovered in copy_bytes in decode_r2007.c in dwgread before 0.12.4 via a crafted dwg file.
A flaw was found in grub2. When reading tar files, grub2 allocates an internal buffer for the file name. However, it fails to properly verify the allocation against possible integer overflows. It's possible to cause the allocation length to overflow with a crafted tar file, leading to a heap out-of-bounds write. This flaw eventually allows an attacker to circumvent secure boot protections.
A vulnerability was found in Performance Co-Pilot (PCP). This flaw allows an attacker to send specially crafted data to the system, which could cause the program to misbehave or crash.
A flaw was found in grub2. When reading a symbolic link's name from a UFS filesystem, grub2 fails to validate the string length taken as an input. The lack of validation may lead to a heap out-of-bounds write, causing data integrity issues and eventually allowing an attacker to circumvent secure boot protections.
A flaw was found in the HFS filesystem. When reading an HFS volume's name at grub_fs_mount(), the HFS filesystem driver performs a strcpy() using the user-provided volume name as input without properly validating the volume name's length. This issue may read to a heap-based out-of-bounds writer, impacting grub's sensitive data integrity and eventually leading to a secure boot protection bypass.
A flaw was found in grub2. A specially crafted JPEG file can cause the JPEG parser of grub2 to incorrectly check the bounds of its internal buffers, resulting in an out-of-bounds write. The possibility of overwriting sensitive information to bypass secure boot protections is not discarded.
A heap buffer overflow was discovered in copy_compressed_bytes in decode_r2007.c in dwgread before 0.12.4 via a crafted dwg file.
Buffer overflow in GNU Wget 1.20.1 and earlier allows remote attackers to cause a denial-of-service (DoS) or may execute an arbitrary code via unspecified vectors.
stab_xcoff_builtin_type in stabs.c in GNU Binutils through 2.37 allows attackers to cause a denial of service (heap-based buffer overflow) or possibly have unspecified other impact, as demonstrated by an out-of-bounds write. NOTE: this issue exists because of an incorrect fix for CVE-2018-12699.
An issue was discovered in libredwg through v0.10.1.3751. bit_read_fixed() in bits.c has a heap-based buffer overflow.
An issue was discovered in ncurses through v6.2-1. _nc_captoinfo in captoinfo.c has a heap-based buffer overflow.
An issue was discovered in libredwg through v0.10.1.3751. appinfo_private() in decode.c has a heap-based buffer overflow.
Buffer overflow in getsym in tekhex.c in libbfd in Free Software Foundation GNU Binutils before 20060423, as used by GNU strings, allows context-dependent attackers to cause a denial of service (application crash) and possibly execute arbitrary code via a file with a crafted Tektronix Hex Format (TekHex) record in which the length character is not a valid hexadecimal character.
A crafted 16-bit grayscale PNG image may lead to a out-of-bounds write in the heap area. An attacker may take advantage of that to cause heap data corruption or eventually arbitrary code execution and circumvent secure boot protections. This issue has a high complexity to be exploited as an attacker needs to perform some triage over the heap layout to achieve signifcant results, also the values written into the memory are repeated three times in a row making difficult to produce valid payloads. This flaw affects grub2 versions prior grub-2.12.
A heap out-of-bounds write may heppen during the handling of Huffman tables in the PNG reader. This may lead to data corruption in the heap space. Confidentiality, Integrity and Availablity impact may be considered Low as it's very complex to an attacker control the encoding and positioning of corrupted Huffman entries to achieve results such as arbitrary code execution and/or secure boot circumvention. This flaw affects grub2 versions prior grub-2.12.
A crafted JPEG image may lead the JPEG reader to underflow its data pointer, allowing user-controlled data to be written in heap. To a successful to be performed the attacker needs to perform some triage over the heap layout and craft an image with a malicious format and payload. This vulnerability can lead to data corruption and eventual code execution or secure boot circumvention. This flaw affects grub2 versions prior grub-2.12.
An out of bounds flaw was found in GNU binutils objdump utility version 2.36. An attacker could use this flaw and pass a large section to avr_elf32_load_records_from_section() probably resulting in a crash or in some cases memory corruption. The highest threat from this vulnerability is to integrity as well as system availability.
GNU indent 2.2.13 has a heap-based buffer overflow in search_brace in indent.c via a crafted file.
The iconv() function in the GNU C Library versions 2.39 and older may overflow the output buffer passed to it by up to 4 bytes when converting strings to the ISO-2022-CN-EXT character set, which may be used to crash an application or overwrite a neighbouring variable.
The bfd_mach_o_read_symtab_strtab function in bfd/mach-o.c in the Binary File Descriptor (BFD) library (aka libbfd), as distributed in GNU Binutils 2.29 and earlier, allows remote attackers to cause an out of bounds heap write and possibly achieve code execution via a crafted mach-o file.
The alpha_vms_object_p function in bfd/vms-alpha.c in the Binary File Descriptor (BFD) library (aka libbfd), as distributed in GNU Binutils 2.29 and earlier, allows remote attackers to cause an out of bounds heap write and possibly achieve code execution via a crafted vms alpha file.
A heap-based buffer overflow flaw was found in the rsync daemon. This issue is due to improper handling of attacker-controlled checksum lengths (s2length) in the code. When MAX_DIGEST_LEN exceeds the fixed SUM_LENGTH (16 bytes), an attacker can write out of bounds in the sum2 buffer.
A flaw was found in grub2 in versions prior to 2.06. Setparam_prefix() in the menu rendering code performs a length calculation on the assumption that expressing a quoted single quote will require 3 characters, while it actually requires 4 characters which allows an attacker to corrupt memory by one byte for each quote in the input. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability.
A flaw was found in grub2 in versions prior to 2.06. The option parser allows an attacker to write past the end of a heap-allocated buffer by calling certain commands with a large number of specific short forms of options. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability.
A flaw was found in binutils readelf 2.35 program. An attacker who is able to convince a victim using readelf to read a crafted file could trigger a stack buffer overflow, out-of-bounds write of arbitrary data supplied by the attacker. The highest impact of this flaw is to confidentiality, integrity, and availability.
A flaw was found in grub2. The calculation of the translation buffer when reading a language .mo file in grub_gettext_getstr_from_position() may overflow, leading to a Out-of-bound write. This issue can be leveraged by an attacker to overwrite grub2's sensitive heap data, eventually leading to the circumvention of secure boot protections.
A vulnerability was reported in the Open vSwitch sub-component in the Linux Kernel. The flaw occurs when a recursive operation of code push recursively calls into the code block. The OVS module does not validate the stack depth, pushing too many frames and causing a stack overflow. As a result, this can lead to a crash or other related issues.
A vulnerability was found in libX11 due to a boundary condition within the _XkbReadKeySyms() function. This flaw allows a local user to trigger an out-of-bounds read error and read the contents of memory on the system.