D-Link DAP-2622 DDP Configuration Backup Filename Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20068.
D-Link DAP-2622 DDP Change ID Password Auth Username Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20060.
D-Link DAP-2622 DDP Reset Factory Auth Username Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20058.
D-Link DAP-2622 DDP Set AG Profile Auth Password Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20080.
D-Link DAP-2622 DDP Change ID Password New Username Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20062.
D-Link DAP-2622 DDP Set AG Profile UUID Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20081.
D-Link DAP-2622 DDP Configuration Backup Auth Password Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20065.
D-Link DAP-2622 DDP Change ID Password New Password Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20063.
D-Link DAP-2622 DDP Set AG Profile NMS URL Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20082.
D-Link DAP-2622 DDP Firmware Upgrade Auth Username Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20074.
D-Link DAP-2622 DDP User Verification Auth Password Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20053.
D-Link DAP-2622 DDP Configuration Backup Auth Username Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20064.
D-Link DAP-2622 DDP Configuration Backup Server IPv6 Address Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20066.
D-Link DAP-2622 DDP Configuration Restore Filename Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20073.
D-Link DAP-2622 DDP Reboot Auth Password Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20055.
D-Link DAP-2622 DDP Set AG Profile Auth Username Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20079.
D-Link DAP-2622 DDP Configuration Restore Server IPv6 Address Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20071.
D-Link DAP-2622 DDP Configuration Restore Auth Password Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20070.
D-Link DAP-2622 DDP Set Date-Time NTP Server Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20085.
D-Link DAP-2622 DDP Reset Factory Auth Password Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20059.
D-Link DAP-2622 DDP Reset Auth Username Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20056.
D-Link DAP-2622 DDP Reset Auth Password Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20057.
D-Link DAP-2622 DDP User Verification Auth Username Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20052.
D-Link DAP-2622 DDP Configuration Backup Server Address Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20067.
D-Link DAP-2622 DDP Firmware Upgrade Auth Password Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20075.
D-Link DAP-2622 DDP Set Date-Time Auth Username Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20083.
NETGEAR RAX30 cmsCli_authenticate Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR RAX30 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within a shared library used by the telnetd service, which listens on TCP port 23 by default. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-19918.
D-Link DAP-1360 webproc WEB_DisplayPage Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1360 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of requests to the /cgi-bin/webproc endpoint. When parsing the getpage and errorpage parameters, the process does not properly validate the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-18419.
D-Link DAP-1360 webproc Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1360 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling requests to the /cgi-bin/webproc endpoint. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-18417.
D-Link DAP-1360 webproc var:menu Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1360 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling requests to the /cgi-bin/webproc endpoint. When parsing the var:menu parameter, the process does not properly validate the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-18414.
An attacker can send a specially crafted message to the Wavelink Avalanche Manager, which could result in service disruption or arbitrary code execution. Thanks to a Researcher at Tenable for finding and reporting. Fixed in version 6.4.1.
D-Link DAP-1360 webproc var:page Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1360 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of requests to the /cgi-bin/webproc endpoint. When parsing the var:page parameter, the process does not properly validate the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-18422.
NETGEAR RAX30 soap_serverd Stack-based Buffer Overflow Authentication Bypass Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR RAX30 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the soap_serverd binary. When parsing SOAP message headers, the process does not properly validate the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to bypass authentication on the system. Was ZDI-CAN-19839.
NETGEAR RAX30 soap_serverd Stack-based Buffer Overflow Authentication Bypass Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR RAX30. Authentication is not required to exploit this vulnerability. The specific flaw exists within the soap_serverd binary. When parsing the request headers, the process does not properly validate the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to bypass authentication on the system. Was ZDI-CAN-19840.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D3600 before 1.0.0.75, D6000 before 1.0.0.75, D6200 before 1.1.00.32, D7000 before 1.0.1.68, JR6150 before 1.0.1.18, PR2000 before 1.0.0.28, R6020 before 1.0.0.38, R6050 before 1.0.1.18, R6080 before 1.0.0.38, R6120 before 1.0.0.46, R6220 before 1.1.0.80, R6260 before 1.1.0.40, R6700v2 before 1.2.0.36, R6800 before 1.2.0.36, R6900v2 before 1.2.0.36, WNR2020 before 1.1.0.62, and XR500 before 2.3.2.32.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D3600 before 1.0.0.76, D6000 before 1.0.0.76, D6200 before 1.1.00.32, D7000 before 1.0.1.68, JR6150 before 1.0.1.18, PR2000 before 1.0.0.28, R6020 before 1.0.0.38, R6050 before 1.0.1.18, R6080 before 1.0.0.38, R6120 before 1.0.0.46, R6220 before 1.1.0.80, R6260 before 1.1.0.40, R6700v2 before 1.2.0.36, R6800 before 1.2.0.36, R6900v2 before 1.2.0.36, WNR2020 before 1.1.0.62, and XR500 before 2.3.2.32.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D3600 before 1.0.0.75, D6000 before 1.0.0.75, D6200 before 1.1.00.32, D7000 before 1.0.1.68, DM200 before 1.0.0.58, JR6150 before 1.0.1.18, PR2000 before 1.0.0.28, R6020 before 1.0.0.38, R6050 before 1.0.1.18, R6080 before 1.0.0.38, R6120 before 1.0.0.46, R6220 before 1.1.0.80, R6260 before 1.1.0.40, R6700v2 before 1.2.0.36, R6800 before 1.2.0.36, R6900v2 before 1.2.0.36, WNR2020 before 1.1.0.62, and XR500 before 2.3.2.32.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D3600 before 1.0.0.76, D6000 before 1.0.0.76, D6200 before 1.1.00.32, D7000 before 1.0.1.68, JR6150 before 1.0.1.18, PR2000 before 1.0.0.28, R6020 before 1.0.0.38, R6050 before 1.0.1.18, R6080 before 1.0.0.38, R6120 before 1.0.0.46, R6220 before 1.1.0.80, R6260 before 1.1.0.40, R6700v2 before 1.2.0.36, R6800 before 1.2.0.36, R6900v2 before 1.2.0.36, WNR2020 before 1.1.0.62, and XR500 before 2.3.2.32.
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR R6260 1.1.0.78_1.0.1 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the setupwizard.cgi page. A crafted SOAP request can trigger an overflow of a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-13511.
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR R6260 1.1.0.78_1.0.1 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the setupwizard.cgi page. When parsing the SOAP_LOGIN_TOKEN environment variable, the process does not properly validate the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-14107.
The ThreadX-based firmware on Marvell Avastar Wi-Fi devices, models 88W8787, 88W8797, 88W8801, 88W8897, and 88W8997, allows remote attackers to execute arbitrary code or cause a denial of service (block pool overflow) via malformed Wi-Fi packets during identification of available Wi-Fi networks. Exploitation of the Wi-Fi device can lead to exploitation of the host application processor in some cases, but this depends on several factors including host OS hardening and the availability of DMA.
Buffer overflow in PTP (Picture Transfer Protocol) of EOS series digital cameras (EOS-1D X firmware version 2.1.0 and earlier, EOS-1D X MKII firmware version 1.1.6 and earlier, EOS-1D C firmware version 1.4.1 and earlier, EOS 5D MARK III firmware version 1.3.5 and earlier, EOS 5D MARK IV firmware version 1.2.0 and earlier, EOS 5DS firmware version 1.1.2 and earlier, EOS 5DS R firmware version 1.1.2 and earlier, EOS 6D firmware version 1.1.8 and earlier, EOS 6D MARK II firmware version 1.0.4 and earlier, EOS 7D MARK II firmware version 1.1.2 and earlier, EOS 70 D firmware version 1.1.2 and earlier, EOS 80 D firmware version 1.0.2 and earlier, EOS KISS X7I / EOS D REBEL T5I / EOS 700D firmware version 1.1.5 and earlier, EOS KISS X8I / EOS D REBEL T6I / EOS 750D firmware version 1.0.0 and earlier, EOS KISS X9I / EOS D REBEL T7I / EOS 800D firmware version 1.0.1 and earlier, EOS KISS X7 / EOS D REBEL SL1 / EOS 100D firmware version 1.0.1 and earlier, EOS KISS X9 / EOS D REBEL SL2 / EOS 200D firmware version 1.0.1 and earlier, EOS KISS X10 / EOS D REBEL SL3 / EOS 200D / EOS 250D firmware version 1.0.1 and earlier, EOS 8000D / EOS D REBEL T6S / EOS 760D firmware version 1.0.0 and earlier, EOS 9000D / EOS 77D firmware version 1.0.2 and earlier, EOS KISS X70 / EOS D REBEL T5 / EOS 1200D firmware version 1.0.2 and earlier, EOS D REBEL T5 RE / EOS 1200D MG / EOS HI firmware version 1.0.2 and earlier, EOS KISS X80 / EOS D REBEL T6 / EOS 1300D firmware version 1.1.0 and earlier, EOS KISS X90 / EOS D REBEL T7 / EOS 1500D / EOS 2000D firmware version 1.0.0 and earlier, EOS D REBEL T100 / EOS 3000D / EOS 4000D firmware version 1.0.0 and earlier, EOS R firmware version 1.3.0 and earlier, EOS RP firmware version 1.2.0 and earlier, EOS RP GOLD firmware version 1.2.0 and earlier, EOS M2 firmware version 1.0.3 and earlier, EOS M3 firmware version 1.2.0 and earlier, EOS M5 firmware version 1.0.1 and earlier, EOS M6 firmware version 1.0.1 and earlier, EOS M6(China) firmware version 5.0.0 and earlier, EOS M10 firmware version 1.1.0 and earlier, EOS M100 firmware version 1.0.0 and earlier, EOS KISS M / EOS M50 firmware version 1.0.2 and earlier) and PowerShot SX740 HS firmware version 1.0.1 and earlier, PowerShot SX70 HS firmware version 1.1.0 and earlier, and PowerShot G5Xmark II firmware version 1.0.1 and earlier allows an attacker on the same network segment to trigger the affected product being unresponsive or to execute arbitrary code on the affected product via notifybtstatus command.
A vulnerability was found in D-Link DI-8100 16.07.26A1. It has been rated as critical. This issue affects the function auth_asp of the file /auth.asp of the component jhttpd. The manipulation of the argument callback leads to stack-based buffer overflow. The attack needs to be approached within the local network. The exploit has been disclosed to the public and may be used.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D3600 before 1.0.0.76, D6000 before 1.0.0.76, D6200 before 1.1.00.32, D7000 before 1.0.1.68, JR6150 before 1.0.1.18, PR2000 before 1.0.0.28, R6020 before 1.0.0.38, R6050 before 1.0.1.18, R6080 before 1.0.0.38, R6120 before 1.0.0.46, R6220 before 1.1.0.80, R6260 before 1.1.0.40, R6700v2 before 1.2.0.36, R6800 before 1.2.0.36, R6900v2 before 1.2.0.36, WNR2020 before 1.1.0.62, and XR500 before 2.3.2.32.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects DGN2200v1 before 1.0.0.58, D8500 before 1.0.3.42, D7000v2 before 1.0.0.51, D6400 before 1.0.0.78, D6220 before 1.0.0.44, JNDR3000 before 1.0.0.24, R8000 before 1.0.4.18, R8500 before 1.0.2.122, R8300 before 1.0.2.122, R7900 before 1.0.2.16, R7000P before 1.3.2.34, R7300DST before 1.0.0.68, R7100LG before 1.0.0.46, R6900P before 1.3.2.34, R7000 before 1.0.9.28, R6900 before 1.0.1.46, R6700 before 1.0.1.46, R6400v2 before 1.0.2.56, R6400 before 1.0.1.42, R6300v2 before 1.0.4.28, R6250 before 1.0.4.26, WNDR3400v3 before 1.0.1.22, WNDR4500v2 before 1.0.0.72, and WNR3500Lv2 before 1.2.0.50.
In l2c_lcc_proc_pdu of l2c_fcr.cc, there is a possible out of bounds write due to a missing bounds check. This could lead to remote code execution over Bluetooth with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-7.0 Android-7.1.1 Android-7.1.2 Android-8.0 Android-8.1 Android-9Android ID: A-120665616
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR R6400v2 1.0.4.106_10.0.80 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the UPnP service, which listens on TCP port 5000 by default. When parsing the uuid request header, the process does not properly validate the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-14110.
A heap overflow flaw was found in the Linux kernel, all versions 3.x.x and 4.x.x before 4.18.0, in Marvell WiFi chip driver. The vulnerability allows a remote attacker to cause a system crash, resulting in a denial of service, or execute arbitrary code. The highest threat with this vulnerability is with the availability of the system. If code execution occurs, the code will run with the permissions of root. This will affect both confidentiality and integrity of files on the system.
NETGEAR R7800 net-cgi Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR R7800 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the parsing of the soap_block_table file. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-13055.
NETGEAR Multiple Routers httpd Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of multiple NETGEAR routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the httpd service, which listens on TCP port 80 by default. When parsing the strings file, the process does not properly validate the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-13709.