LibHTP is a security-aware parser for the HTTP protocol and its related bits and pieces. In versions 0.5.50 and below, there is a traffic-induced memory leak that can starve the process of memory, leading to loss of visibility. To workaround this issue, set `suricata.yaml app-layer.protocols.http.libhtp.default-config.lzma-enabled` to false. This issue is fixed in version 0.5.51.
Late Release of Memory after Effective Lifetime vulnerability in Apache HTTP Server. This issue affects Apache HTTP Server: from 2.4.17 up to 2.4.63. Users are recommended to upgrade to version 2.4.64, which fixes the issue.
IBM MQ, IBM MQ Appliance, IBM MQ for HPE NonStop 8.0, 9.1 CD, and 9.1 LTS could allow an attacker to cause a denial of service due to a memory leak caused by an error creating a dynamic queue. IBM X-Force ID: 179080.
Adobe Acrobat and Reader versions 2019.021.20061 and earlier, 2017.011.30156 and earlier, 2017.011.30156 and earlier, and 2015.006.30508 and earlier have a stack exhaustion vulnerability. Successful exploitation could lead to memory leak .
Multer is a node.js middleware for handling `multipart/form-data`. Versions prior to 2.0.0 are vulnerable to a resource exhaustion and memory leak issue due to improper stream handling. When the HTTP request stream emits an error, the internal `busboy` stream is not closed, violating Node.js stream safety guidance. This leads to unclosed streams accumulating over time, consuming memory and file descriptors. Under sustained or repeated failure conditions, this can result in denial of service, requiring manual server restarts to recover. All users of Multer handling file uploads are potentially impacted. Users should upgrade to 2.0.0 to receive a patch. No known workarounds are available.
A memory leak in the fsl_lpspi_probe() function in drivers/spi/spi-fsl-lpspi.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering pm_runtime_get_sync() failures, aka CID-057b8945f78f. NOTE: third parties dispute the relevance of this because an attacker cannot realistically control these failures at probe time
A flaw was found in Privoxy in versions before 3.0.29. Memory leaks when a response is buffered and the buffer limit is reached or Privoxy is running out of memory can lead to a system crash.
smtpd/table.c in OpenSMTPD before 6.8.0p1 lacks a certain regfree, which might allow attackers to trigger a "very significant" memory leak via messages to an instance that performs many regex lookups.
Memory leak in IPv6Param::setAddress in CloudAvid PParam 1.3.1.
In Amazon AWS Firecracker before 0.21.3, and 0.22.x before 0.22.1, the serial console buffer can grow its memory usage without limit when data is sent to the standard input. This can result in a memory leak on the microVM emulation thread, possibly occupying more memory than intended on the host.
In certain configurations on version 13.1.3.4, when a BIG-IP AFM HTTP security profile is applied to a virtual server and the BIG-IP system receives a request with specific characteristics, the connection is reset and the Traffic Management Microkernel (TMM) leaks memory.
When a client-side HTTP/2 profile and the HTTP MRF Router option are enabled for a virtual server, and an iRule using the HTTP_REQUEST event or Local Traffic Policy are associated with the virtual server, undisclosed requests can cause TMM to terminate. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
A memory leak vulnerability was found in Linux kernel in llcp_sock_connect
A memory leak flaw was found in WildFly OpenSSL in versions prior to 1.1.3.Final, where it removes an HTTP session. It may allow the attacker to cause OOM leading to a denial of service. The highest threat from this vulnerability is to system availability.
An issue was discovered in the sized-chunks crate through 0.6.2 for Rust. In the Chunk implementation, insert_from can have a memory-safety issue upon a panic.
A Missing Release of Memory after Effective Lifetime vulnerability in the Anti-Virus processing of Juniper Networks Junos OS on SRX Series allows an unauthenticated, network-based attacker to cause a Denial-of-Service (DoS). On all SRX platforms with Anti-Virus enabled, if a server sends specific content in the HTTP body of a response to a client request, these packets are queued by Anti-Virus processing in Juniper Buffers (jbufs) which are never released. When these jbufs are exhausted, the device stops forwarding all transit traffic. A jbuf memory leak can be noticed from the following logs: (<node>.)<fpc> Warning: jbuf pool id <#> utilization level (<current level>%) is above <threshold>%! To recover from this issue, the affected device needs to be manually rebooted to free the leaked jbufs. This issue affects Junos OS on SRX Series: * all versions before 21.2R3-S9, * 21.4 versions before 21.4R3-S10, * 22.2 versions before 22.2R3-S6, * 22.4 versions before 22.4R3-S6, * 23.2 versions before 23.2R2-S3, * 23.4 versions before 23.4R2-S3, * 24.2 versions before 24.2R2.
A memory leak in the kernel_read_file function in fs/exec.c in the Linux kernel through 4.20.11 allows attackers to cause a denial of service (memory consumption) by triggering vfs_read failures.
On BIG-IP 15.0.0-15.0.1, 14.1.0-14.1.2, 14.0.0-14.0.1, and 13.1.0-13.1.3.1, under certain conditions tmm may leak memory when processing packet fragments, leading to resource starvation.
In ImageMagick before 7.0.8-25, a memory leak exists in WriteDIBImage in coders/dib.c.
GraphQL Mesh is a GraphQL Federation framework and gateway for both GraphQL Federation and non-GraphQL Federation subgraphs, non-GraphQL services, such as REST and gRPC, and also databases such as MongoDB, MySQL, and PostgreSQL. When a user transforms on the root level or single source with transforms, and the client sends the same query with different variables, the initial variables are used in all following requests until the cache evicts DocumentNode. If a token is sent via variables, the following requests will act like the same token is sent even if the following requests have different tokens. This can cause a short memory leak but it won't grow per each request but per different operation until the cache evicts DocumentNode by LRU mechanism.
In ImageMagick before 7.0.8-25, some memory leaks exist in DecodeImage in coders/pcd.c.
The broker in Eclipse Mosquitto 1.3.2 through 2.x before 2.0.16 has a memory leak that can be abused remotely when a client sends many QoS 2 messages with duplicate message IDs, and fails to respond to PUBREC commands. This occurs because of mishandling of EAGAIN from the libc send function.
A vulnerability has been identified in SIMATIC CP 1242-7 V2 (incl. SIPLUS variants) (All versions < V3.4.29), SIMATIC CP 1243-1 (incl. SIPLUS variants) (All versions < V3.4.29), SIMATIC CP 1243-1 DNP3 (incl. SIPLUS variants) (All versions), SIMATIC CP 1243-1 IEC (incl. SIPLUS variants) (All versions < V3.4.29), SIMATIC CP 1243-7 LTE (All versions < V3.4.29), SIMATIC CP 1243-8 IRC (6GK7243-8RX30-0XE0) (All versions < V3.4.29), SIMATIC CP 1542SP-1 (6GK7542-6UX00-0XE0) (All versions < V2.3), SIMATIC CP 1542SP-1 IRC (6GK7542-6VX00-0XE0) (All versions < V2.3), SIMATIC CP 1543-1 (6GK7543-1AX00-0XE0) (All versions < V3.0.37), SIMATIC CP 1543SP-1 (6GK7543-6WX00-0XE0) (All versions < V2.3), SINAMICS S210 (6SL5...) (All versions >= V6.1 < V6.1 HF2), SIPLUS ET 200SP CP 1542SP-1 IRC TX RAIL (6AG2542-6VX00-4XE0) (All versions < V2.3), SIPLUS ET 200SP CP 1543SP-1 ISEC (6AG1543-6WX00-7XE0) (All versions < V2.3), SIPLUS ET 200SP CP 1543SP-1 ISEC TX RAIL (6AG2543-6WX00-4XE0) (All versions < V2.3), SIPLUS NET CP 1543-1 (6AG1543-1AX00-2XE0) (All versions < V3.0.37). The webserver implementation of the affected products does not correctly release allocated memory after it has been used. An attacker with network access could use this vulnerability to cause a denial-of-service condition in the webserver of the affected product.
By spoofing the target resolver with responses that have a malformed EdDSA signature, an attacker can trigger a small memory leak. It is possible to gradually erode available memory to the point where named crashes for lack of resources.
xmlParseBalancedChunkMemoryRecover in parser.c in libxml2 before 2.9.10 has a memory leak related to newDoc->oldNs.
xmlSchemaPreRun in xmlschemas.c in libxml2 2.9.10 allows an xmlSchemaValidateStream memory leak.
In Mosquitto before 2.0.16, a memory leak occurs when clients send v5 CONNECT packets with a will message that contains invalid property types.
An issue was discovered in Mattermost Server before 5.7, 5.6.3, 5.5.2, and 4.10.5. It allows attackers to cause a denial of service (memory consumption) via an outgoing webhook or a slash command integration.
A memory leak in the adis_update_scan_mode_burst() function in drivers/iio/imu/adis_buffer.c in the Linux kernel before 5.3.9 allows attackers to cause a denial of service (memory consumption), aka CID-9c0530e898f3.
A memory leak in the spi_gpio_probe() function in drivers/spi/spi-gpio.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering devm_add_action_or_reset() failures, aka CID-d3b0ffa1d75d. NOTE: third parties dispute the relevance of this because the system must have already been out of memory before the probe began
A memory leak in the komeda_wb_connector_add() function in drivers/gpu/drm/arm/display/komeda/komeda_wb_connector.c in the Linux kernel before 5.3.8 allows attackers to cause a denial of service (memory consumption) by triggering drm_writeback_connector_init() failures, aka CID-a0ecd6fdbf5d.
A memory leak in the unittest_data_add() function in drivers/of/unittest.c in the Linux kernel before 5.3.10 allows attackers to cause a denial of service (memory consumption) by triggering of_fdt_unflatten_tree() failures, aka CID-e13de8fe0d6a. NOTE: third parties dispute the relevance of this because unittest.c can only be reached during boot
A memory leak in the qrtr_tun_write_iter() function in net/qrtr/tun.c in the Linux kernel before 5.3 allows attackers to cause a denial of service (memory consumption), aka CID-a21b7f0cff19.
A memory leak in the adis_update_scan_mode() function in drivers/iio/imu/adis_buffer.c in the Linux kernel before 5.3.9 allows attackers to cause a denial of service (memory consumption), aka CID-ab612b1daf41.
A memory leak in the ath9k_wmi_cmd() function in drivers/net/wireless/ath/ath9k/wmi.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption), aka CID-728c1e2a05e4.
A memory leak in the rsi_send_beacon() function in drivers/net/wireless/rsi/rsi_91x_mgmt.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering rsi_prepare_beacon() failures, aka CID-d563131ef23c.
Two memory leaks in the sja1105_static_config_upload() function in drivers/net/dsa/sja1105/sja1105_spi.c in the Linux kernel before 5.3.5 allow attackers to cause a denial of service (memory consumption) by triggering static_config_buf_prepare_for_upload() or sja1105_inhibit_tx() failures, aka CID-68501df92d11.
A memory leak in the fastrpc_dma_buf_attach() function in drivers/misc/fastrpc.c in the Linux kernel before 5.3.9 allows attackers to cause a denial of service (memory consumption) by triggering dma_get_sgtable() failures, aka CID-fc739a058d99.
A memory leak in the gs_can_open() function in drivers/net/can/usb/gs_usb.c in the Linux kernel before 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering usb_submit_urb() failures, aka CID-fb5be6a7b486.
A memory leak in the rpmsg_eptdev_write_iter() function in drivers/rpmsg/rpmsg_char.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering copy_from_iter_full() failures, aka CID-bbe692e349e2.
A memory leak in the dwc3_pci_probe() function in drivers/usb/dwc3/dwc3-pci.c in the Linux kernel through 5.3.9 allows attackers to cause a denial of service (memory consumption) by triggering platform_device_add_properties() failures, aka CID-9bbfceea12a8.
A memory leak in the ca8210_probe() function in drivers/net/ieee802154/ca8210.c in the Linux kernel before 5.3.8 allows attackers to cause a denial of service (memory consumption) by triggering ca8210_get_platform_data() failures, aka CID-6402939ec86e.
A memory leak in the crypto_reportstat() function in crypto/crypto_user_stat.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering crypto_reportstat_alg() failures, aka CID-c03b04dcdba1.
A memory leak in the sof_dfsentry_write() function in sound/soc/sof/debug.c in the Linux kernel through 5.3.9 allows attackers to cause a denial of service (memory consumption), aka CID-c0a333d842ef.
A memory leak in the ath10k_usb_hif_tx_sg() function in drivers/net/wireless/ath/ath10k/usb.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering usb_submit_urb() failures, aka CID-b8d17e7d93d2.
A memory leak in the crypto_reportstat() function in drivers/virt/vboxguest/vboxguest_utils.c in the Linux kernel before 5.3.9 allows attackers to cause a denial of service (memory consumption) by triggering copy_form_user() failures, aka CID-e0b0cb938864.
go-crypto-winnative Go crypto backend for Windows using Cryptography API: Next Generation (CNG). Prior to commit f49c8e1379ea4b147d5bff1b3be5b0ff45792e41, calls to `cng.TLS1PRF` don't release the key handle, producing a small memory leak every time. Commit f49c8e1379ea4b147d5bff1b3be5b0ff45792e41 contains a fix for the issue. The fix is included in versions 1.23.6-2 and 1.22.12-2 of the Microsoft build of go, as well as in the pseudoversion 0.0.0-20250211154640-f49c8e1379ea of the `github.com/microsoft/go-crypto-winnative` Go package.
HuffmanTree_makeFromFrequencies in lodepng.c in LodePNG through 2019-09-28, as used in WinPR in FreeRDP and other products, has a memory leak because a supplied realloc pointer (i.e., the first argument to realloc) is also used for a realloc return value.
In the Linux kernel before 5.0.3, a memory leak exits in hsr_dev_finalize() in net/hsr/hsr_device.c if hsr_add_port fails to add a port, which may cause denial of service, aka CID-6caabe7f197d.
libfreerdp/codec/region.c in FreeRDP through 1.1.x and 2.x through 2.0.0-rc4 has memory leaks because a supplied realloc pointer (i.e., the first argument to realloc) is also used for a realloc return value.