A denial of service vulnerability exists in curl <v8.1.0 in the way libcurl provides several different backends for resolving host names, selected at build time. If it is built to use the synchronous resolver, it allows name resolves to time-out slow operations using `alarm()` and `siglongjmp()`. When doing this, libcurl used a global buffer that was not mutex protected and a multi-threaded application might therefore crash or otherwise misbehave.
A resource exhaustion issue was addressed with improved input validation. This issue is fixed in macOS Big Sur 11.0.1. An attacker in a privileged network position may be able to perform denial of service.
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service. The attacker sends a stream of headers with a 0-length header name and 0-length header value, optionally Huffman encoded into 1-byte or greater headers. Some implementations allocate memory for these headers and keep the allocation alive until the session dies. This can consume excess memory.
Some HTTP/2 implementations are vulnerable to ping floods, potentially leading to a denial of service. The attacker sends continual pings to an HTTP/2 peer, causing the peer to build an internal queue of responses. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU.
Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both.
Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU.
Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both.
A resource exhaustion issue was addressed with improved input validation. This issue is fixed in iOS 13.1 and iPadOS 13.1, macOS Catalina 10.15. Parsing a maliciously crafted iBooks file may lead to a persistent denial-of-service.
A denial-of-service issue was addressed with improved input validation. This issue is fixed in tvOS 16.3.2, iOS 16.3.1 and iPadOS 16.3.1, watchOS 9.3.1, macOS Ventura 13.2.1. Processing a maliciously crafted certificate may lead to a denial-of-service.
IBM Security Verify Privilege On-Premises 11.5 could allow a privileged user to cause by using a malicious payload. IBM X-Force ID: 240634.
The issue was addressed with improved memory handling. This issue is fixed in visionOS 2.4, tvOS 18.4, iPadOS 17.7.6, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, Safari 18.4. Processing maliciously crafted web content may lead to an unexpected Safari crash.
bzip2 allows remote attackers to cause a denial of service (hard drive consumption) via a crafted bzip2 file that causes an infinite loop (a.k.a "decompression bomb").
This issue was addressed with improved checks. This issue is fixed in tvOS 15.5, watchOS 8.6, iOS 15.5 and iPadOS 15.5, macOS Monterey 12.4, macOS Big Sur 11.6.6, Security Update 2022-004 Catalina. A remote user may be able to cause a denial-of-service.
WebKit in Apple iOS before 9.3.3, Safari before 9.1.2, and tvOS before 9.2.2 allows remote attackers to cause a denial of service (memory consumption) via a crafted web site.
The History implementation in WebKit in Apple iOS before 9.3, Safari before 9.1, and tvOS before 9.2 allows remote attackers to cause a denial of service (resource consumption and application crash) via a crafted web site.
The issue was addressed with improved memory handling. This issue is fixed in iOS 17.4 and iPadOS 17.4, Safari 17.4, tvOS 17.4, watchOS 10.4, visionOS 1.1, macOS Sonoma 14.4. Processing web content may lead to a denial-of-service.
Trend Micro's Virus Scan API (VSAPI) and Advanced Threat Scan Engine (ATSE) - are vulnerable to a memory exhaustion vulnerability that may lead to denial-of-service or system freeze if exploited by an attacker using a specially crafted file.
The IPv6 implementation in Apple Mac OS X (unknown versions, year 2012 and earlier) allows remote attackers to cause a denial of service via a flood of ICMPv6 Router Advertisement packets containing multiple Routing entries.
The issue was addressed with improved memory handling. This issue is fixed in macOS Sequoia 15.6. An app may be able to cause a denial-of-service.
The issue was addressed with improved memory handling. This issue is fixed in tvOS 26.1, watchOS 26.1, macOS Tahoe 26.1, iOS 26.1 and iPadOS 26.1, visionOS 26.1. An app may be able to cause unexpected system termination or corrupt kernel memory.
A denial-of-service issue was addressed with improved validation. This issue is fixed in macOS Sonoma 14.8, macOS Sequoia 15.7, iOS 18.7 and iPadOS 18.7. An app may be able to cause a denial-of-service.
The issue was addressed with improved memory handling. This issue is fixed in macOS Sequoia 15.6, macOS Ventura 13.7.7, macOS Sonoma 14.7.7. An app may be able to cause a denial-of-service.
The issue was addressed with improved UI. This issue is fixed in iPadOS 17.7.7, iOS 18.5 and iPadOS 18.5. Processing web content may lead to a denial-of-service.
The issue was addressed with improved input sanitization. This issue is fixed in watchOS 11.5, macOS Sonoma 14.7.6, tvOS 18.5, iPadOS 17.7.7, iOS 18.5 and iPadOS 18.5, macOS Sequoia 15.5, visionOS 2.5, macOS Ventura 13.7.6. Processing a maliciously crafted media file may lead to unexpected app termination or corrupt process memory.
A logic issue was addressed with improved checks. This issue is fixed in watchOS 11.5, tvOS 18.5, iPadOS 17.7.7, iOS 18.5 and iPadOS 18.5, macOS Sequoia 15.5, visionOS 2.5. Processing a maliciously crafted image may lead to a denial-of-service.
The resolver in nginx before 1.8.1 and 1.9.x before 1.9.10 does not properly limit CNAME resolution, which allows remote attackers to cause a denial of service (worker process resource consumption) via vectors related to arbitrary name resolution.
An uncontrolled format string issue was addressed with improved input validation. This issue is fixed in macOS Ventura 13.7.5, macOS Sequoia 15.4, macOS Sonoma 14.7.5. An app may be able to cause a denial-of-service.
An input validation issue was addressed. This issue is fixed in visionOS 2.3, iOS 18.3 and iPadOS 18.3, macOS Sequoia 15.3, watchOS 11.3, tvOS 18.3. An attacker on the local network may be able to cause unexpected system termination or corrupt process memory.
A memory initialization issue was addressed with improved memory handling. This issue is fixed in macOS Ventura 13.7.5, macOS Sequoia 15.4, macOS Sonoma 14.7.5. A remote attacker may be able to cause unexpected app termination or heap corruption.
The issue was addressed with improved memory handling. This issue is fixed in macOS Ventura 13.7.5, macOS Sequoia 15.4, macOS Sonoma 14.7.5. An attacker in a privileged position may be able to perform a denial-of-service.
The issue was addressed with improved memory handling. This issue is fixed in visionOS 2.4, macOS Ventura 13.7.5, tvOS 18.4, iPadOS 17.7.6, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, macOS Sonoma 14.7.5. Processing a maliciously crafted video file may lead to unexpected app termination or corrupt process memory.
A type confusion issue was addressed with improved checks. This issue is fixed in macOS Ventura 13.7.5, macOS Sequoia 15.4, macOS Sonoma 14.7.5. An attacker may be able to cause unexpected app termination.
The issue was addressed with improved memory handling. This issue is fixed in macOS Sequoia 15.4. An app may be able to cause unexpected system termination.
This issue was addressed with improved memory handling. This issue is fixed in visionOS 2.4, macOS Ventura 13.7.5, tvOS 18.4, iPadOS 17.7.6, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, macOS Sonoma 14.7.5. Processing a maliciously crafted video file may lead to unexpected app termination or corrupt process memory.
The issue was addressed with improved memory handling. This issue is fixed in macOS Ventura 13.7.3, macOS Sequoia 15.3, macOS Sonoma 14.7.3. An app may be able to cause unexpected system termination or corrupt kernel memory.
Processing a file may lead to a denial-of-service or potentially disclose memory contents. This issue is fixed in macOS 14. The issue was addressed with improved checks.
Certain WithSecure products allow a remote crash of a scanning engine via processing of a compressed file. This affects WithSecure Client Security 15, WithSecure Server Security 15, WithSecure Email and Server Security 15, WithSecure Elements Endpoint Protection 17 and later, WithSecure Client Security for Mac 15, WithSecure Elements Endpoint Protection for Mac 17 and later, Linux Security 64 12.0 , Linux Protection 12.0, and WithSecure Atlant (formerly F-Secure Atlant) 1.0.35-1.
Certain WithSecure products allow a remote crash of a scanning engine via decompression of crafted data files. This affects WithSecure Client Security 15, WithSecure Server Security 15, WithSecure Email and Server Security 15, WithSecure Elements Endpoint Protection 17 and later, WithSecure Client Security for Mac 15, WithSecure Elements Endpoint Protection for Mac 17 and later, Linux Security 64 12.0 , Linux Protection 12.0, and WithSecure Atlant (formerly F-Secure Atlant) 1.0.35-1.
Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log messages, and parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker who can control log messages or log message parameters can execute arbitrary code loaded from LDAP servers when message lookup substitution is enabled. From log4j 2.15.0, this behavior has been disabled by default. From version 2.16.0 (along with 2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Note that this vulnerability is specific to log4j-core and does not affect log4net, log4cxx, or other Apache Logging Services projects.
An issue was discovered in certain Apple products. iOS before 11.2.5 is affected. macOS before 10.13.3 is affected. watchOS before 4.2.2 is affected. The issue involves the "LinkPresentation" component. It allows remote attackers to cause a denial of service (resource consumption) via a crafted text message.
An issue was discovered in certain Apple products. iOS before 11 is affected. macOS before 10.13 is affected. tvOS before 11 is affected. watchOS before 4 is affected. The issue involves the "libc" component. It allows remote attackers to cause a denial of service (resource consumption) via a crafted string that is mishandled by the glob function.
An issue was discovered in certain Apple products. macOS before 10.13.1 is affected. The issue involves the "Quick Look" component. It allows remote attackers to execute arbitrary code or cause a denial of service (memory consumption) via a crafted Office document.
The issue was addressed with improved memory handling. This issue is fixed in macOS Sequoia 15. An app may be able to cause unexpected system termination or corrupt kernel memory.
Trend Micro ID Security, version 3.0 and below contains a vulnerability that could allow an attacker to send an unlimited number of email verification requests without any restriction, potentially leading to abuse or denial of service.
The issue was addressed with improved checks. This issue is fixed in macOS Sonoma 14.7.6, tvOS 18.5, iPadOS 17.7.7, iOS 18.5 and iPadOS 18.5, macOS Sequoia 15.5, visionOS 2.5, macOS Ventura 13.7.6. An app may be able to cause unexpected system termination.
The issue was addressed with improved checks. This issue is fixed in watchOS 11, macOS Sequoia 15, Safari 18, visionOS 2, iOS 18 and iPadOS 18, tvOS 18. Processing maliciously crafted web content may lead to an unexpected process crash.
An issue in OneTrust SDK v.6.33.0 allows a local attacker to cause a denial of service via the Object.setPrototypeOf, __proto__, and Object.assign components. NOTE: this is disputed by the Supplier who does not agree it is a prototype pollution vulnerability.