Buffer overflow can occur in In WLAN firmware while unwraping data using CCMP cipher suite during parsing of EAPOL handshake frame in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wired Infrastructure and Networking in APQ8009, APQ8017, APQ8053, APQ8064, APQ8096, APQ8096AU, APQ8098, IPQ6018, IPQ8074, MDM9206, MDM9207C, MDM9607, MDM9640, MDM9650, MSM8996AU, MSM8998, Nicobar, QCA4531, QCA6174A, QCA6564, QCA6574, QCA6574AU, QCA6584, QCA6584AU, QCA8081, QCA9377, QCA9379, QCA9886, QCN7605, QCS404, QCS405, QCS605, Rennell, SA6155P, SC7180, SC8180X, SDA660, SDA845, SDM630, SDM636, SDM660, SDM670, SDM710, SDM845, SDM850, SDX20, SDX24, SM6150, SM7150, SM8150, SXR1130, SXR2130
Buffer overflow occur while playing the clip which is nonstandard due to lack of offset length check in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables in APQ8009, APQ8017, APQ8053, APQ8064, APQ8096AU, APQ8098, MDM9206, MDM9207C, MDM9607, MSM8905, MSM8909, MSM8909W, MSM8917, MSM8920, MSM8937, MSM8939, MSM8940, MSM8953, MSM8996, MSM8996AU, Nicobar, QCS605, QM215, Rennell, SA6155P, SDA660, SDA845, SDM429, SDM429W, SDM439, SDM450, SDM630, SDM632, SDM636, SDM660, SDM670, SDM710, SDM845, SDX20, SM6150, SM7150, SM8150, SM8250, SXR2130
Several Ricoh printers have multiple buffer overflows parsing LPD packets, which allow an attacker to cause a denial of service or code execution via crafted requests to the LPD service. Affected firmware versions depend on the printer models. One affected configuration is cpe:2.3:o:ricoh:sp_c250dn_firmware:-:*:*:*:*:*:*:* up to (including) 1.06 running on cpe:2.3:o:ricoh:sp_c250dn:-:*:*:*:*:*:*:*, cpe:2.3:o:ricoh:sp_c252dn:-:*:*:*:*:*:*:*. Another affected configuration is cpe:2.3:o:ricoh:sp_c250sf_firmware:-:*:*:*:*:*:*:* up to (including) 1.12 running on cpe:2.3:o:ricoh:sp_c250sf:-:*:*:*:*:*:*:*, cpe:2.3:o:ricoh:sp_c252sf:-:*:*:*:*:*:*:*.
A vulnerability classified as critical has been found in D-Link DIR-513 1.10. This affects the function formSetWanPPTPcallback of the file /goform/formSetWanPPTPpath of the component HTTP POST Request Handler. The manipulation of the argument curTime leads to buffer overflow. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. This vulnerability only affects products that are no longer supported by the maintainer.
Buffer overflow in NetMeeting allows denial of service and remote command execution.
Denial of service to NT mail servers including Ipswitch, Mdaemon, and Exchange through a buffer overflow in the SMTP HELO command.
libxml2 in Apple iOS before 9.3.3, OS X before 10.11.6, iTunes before 12.4.2 on Windows, iCloud before 5.2.1 on Windows, tvOS before 9.2.2, and watchOS before 2.2.2 allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via unknown vectors, a different vulnerability than CVE-2016-4614, CVE-2016-4616, and CVE-2016-4619.
Buffer overflow can occur in function wlan firmware while copying association frame content if frame length is more than the maximum buffer size in case of SAP mode in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wired Infrastructure and Networking in APQ8009, APQ8017, APQ8053, APQ8064, APQ8096, APQ8096AU, APQ8098, IPQ6018, IPQ8074, MDM9206, MDM9207C, MDM9607, MDM9640, MDM9650, MSM8996, MSM8996AU, MSM8998, Nicobar, QCA4531, QCA6174A, QCA6564, QCA6574AU, QCA6584, QCA6584AU, QCA8081, QCA9377, QCA9379, QCA9886, QCN7605, QCS404, QCS405, QCS605, Rennell, SA6155P, SC7180, SC8180X, SDA660, SDA845, SDM630, SDM636, SDM660, SDM670, SDM710, SDM845, SDM850, SDX20, SDX24, SM6150, SM7150, SM8150, SXR1130, SXR2130
A vulnerability was found in TOTOLINK X15 1.0.0-B20230714.1105. It has been classified as critical. Affected is an unknown function of the file /boafrm/formMapDelDevice of the component HTTP POST Request Handler. The manipulation of the argument macstr leads to buffer overflow. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used.
Several Ricoh printers have multiple buffer overflows parsing HTTP parameter settings for SNMP, which allow an attacker to cause a denial of service or code execution via crafted requests to the web server. Affected firmware versions depend on the printer models. One affected configuration is cpe:2.3:o:ricoh:sp_c250dn_firmware:-:*:*:*:*:*:*:* up to (including) 1.06 running on cpe:2.3:o:ricoh:sp_c250dn:-:*:*:*:*:*:*:*, cpe:2.3:o:ricoh:sp_c252dn:-:*:*:*:*:*:*:*. Another affected configuration is cpe:2.3:o:ricoh:sp_c250sf_firmware:-:*:*:*:*:*:*:* up to (including) 1.12 running on cpe:2.3:o:ricoh:sp_c250sf:-:*:*:*:*:*:*:*, cpe:2.3:o:ricoh:sp_c252sf:-:*:*:*:*:*:*:*.
Multiple buffer overflows in the LWRES dissector in Wireshark 0.9.15 through 1.0.10 and 1.2.0 through 1.2.5 allow remote attackers to cause a denial of service (crash) via a malformed packet, as demonstrated using a stack-based buffer overflow to the dissect_getaddrsbyname_request function.
Stack-based buffer overflow in Mini-stream CastRipper 2.50.70 allows remote attackers to execute arbitrary code via a long URL in the [playlist] section in a .pls file, a different vector than CVE-2009-1667.
Buffer overflow in BarnOwl before 1.5.1 allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via a crafted CC: header.
Possible buffer overflow when byte array receives incorrect input from reading source as array is not null terminated in Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile in Nicobar, SDM670, SDM710, SDM845, SM6150, SM8150, SM8250, SXR2130
Some Xerox printers (such as the Phaser 3320 V53.006.16.000) were affected by a buffer overflow vulnerability in the Content-Type HTTP Header of the web application that would allow an attacker to execute arbitrary code on the device.
Some Kyocera printers (such as the ECOSYS M5526cdw 2R7_2000.001.701) were affected by a buffer overflow vulnerability in the LPD service. This would allow an unauthenticated attacker to cause a Denial of Service (DoS) in the LPD service and potentially execute arbitrary code on the device.
There are buffer overflow vulnerabilities in multiple underlying services that could lead to unauthenticated remote code execution by sending specially crafted packets destined to the PAPI (Aruba's access point management protocol) UDP port (8211). Successful exploitation of these vulnerabilities result in the ability to execute arbitrary code as a privileged user on the underlying operating system.
drivers/soc/qcom/qdsp6v2/voice_svc.c in the QDSP6v2 Voice Service driver for the Linux kernel 3.x, as used in Qualcomm Innovation Center (QuIC) Android contributions for MSM devices and other products, allows attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via a write request, as demonstrated by a voice_svc_send_req buffer overflow.
A buffer copy without checking size of input vulnerability has been reported to affect QNAP operating system. If exploited, the vulnerability possibly allows remote users to execute code via unspecified vectors. We have already fixed the vulnerability in the following versions: QTS 4.3.6.2441 build 20230621 and later QTS 4.3.3.2420 build 20230621 and later QTS 4.2.6 build 20230621 and later QTS 4.3.4.2451 build 20230621 and later
Stack-based buffer overflow in Namazu before 2.0.20 allows remote attackers to cause a denial of service (daemon crash) or possibly execute arbitrary code via a crafted request containing an empty uri field.
Some Xerox printers (such as the Phaser 3320 V53.006.16.000) were affected by a buffer overflow vulnerability in the attributes parser of the IPP service. This would allow an unauthenticated attacker to cause a Denial of Service (DoS) and potentially execute arbitrary code on the device.
The `Toybox.Cryptography.Cipher.initialize` API method in CIQ API version 3.0.0 through 4.1.7 does not validate its parameters, which can result in buffer overflows when copying data. A malicious application could call the API method with specially crafted parameters and hijack the execution of the device's firmware.
The GarminOS TVM component in CIQ API version 1.0.0 through 4.1.7 is vulnerable to various buffer overflows when loading binary resources. A malicious application embedding specially crafted resources could hijack the execution of the device's firmware.
There are buffer overflow vulnerabilities in multiple underlying services that could lead to unauthenticated remote code execution by sending specially crafted packets destined to the PAPI (Aruba's access point management protocol) UDP port (8211). Successful exploitation of these vulnerabilities result in the ability to execute arbitrary code as a privileged user on the underlying operating system.
There are buffer overflow vulnerabilities in multiple underlying services that could lead to unauthenticated remote code execution by sending specially crafted packets destined to the PAPI (Aruba's access point management protocol) UDP port (8211). Successful exploitation of these vulnerabilities result in the ability to execute arbitrary code as a privileged user on the underlying operating system.
In Xymon through 4.3.28, a buffer overflow vulnerability exists in reportlog.c.
Some Kyocera printers (such as the ECOSYS M5526cdw 2R7_2000.001.701) were affected by a buffer overflow vulnerability in the URI paths of the web application that would allow an unauthenticated attacker to perform a Denial of Service attack, crashing the device, or potentially execute arbitrary code on the device.
Multiple unspecified vulnerabilities in the browser engine in Mozilla Firefox before 49.0, Firefox ESR 45.x before 45.4 and Thunderbird < 45.4 allow remote attackers to cause a denial of service (memory corruption and application crash) or possibly execute arbitrary code via unknown vectors.
FreeTDS through 1.1.11 has a Buffer Overflow.
Insufficient boundary checks when formatting numbers in number_format allows read/write access to out-of-bounds memory, potentially leading to remote code execution. This issue affects HHVM versions prior to 3.30.10, all versions between 4.0.0 and 4.8.5, all versions between 4.9.0 and 4.18.2, and versions 4.19.0, 4.19.1, 4.20.0, 4.20.1, 4.20.2, 4.21.0, 4.22.0, 4.23.0.
Wind River VxWorks 6.9 and vx7 has a Buffer Overflow in the IPv4 component. There is an IPNET security vulnerability: Stack overflow in the parsing of IPv4 packets’ IP options.
Multiple stack-based buffer overflows in src/Task.cc in the FastCGI program in IIPImage Server before 0.9.8 might allow remote attackers to execute arbitrary code via vectors associated with crafted arguments to the (1) RGN::run, (2) JTLS::run, or (3) SHD::run function. NOTE: some of these details are obtained from third party information.
A heap buffer overflow bug in libpl_droidsonroids_gif before 1.2.19, as used in WhatsApp for Android before version 2.19.291 could allow remote attackers to execute arbitrary code or cause a denial of service.
There are buffer overflow vulnerabilities in multiple underlying services that could lead to unauthenticated remote code execution by sending specially crafted packets destined to the PAPI (Aruba's access point management protocol) UDP port (8211). Successful exploitation of these vulnerabilities result in the ability to execute arbitrary code as a privileged user on the underlying operating system.
There are buffer overflow vulnerabilities in multiple underlying services that could lead to unauthenticated remote code execution by sending specially crafted packets destined to the PAPI (Aruba's access point management protocol) UDP port (8211). Successful exploitation of these vulnerabilities result in the ability to execute arbitrary code as a privileged user on the underlying operating system.
There are buffer overflow vulnerabilities in multiple underlying operating system processes that could lead to unauthenticated remote code execution by sending specially crafted packets via the PAPI protocol. Successful exploitation of these vulnerabilities result in the ability to execute arbitrary code as a privileged user on the underlying operating system.
apply.cgi on the TRENDnet TEW-632BRP 1.010B32 router has a buffer overflow via long strings to the SOAPACTION:HNAP1 interface.
A vulnerability has been found in Tenda M3 1.0.0.12. Affected by this vulnerability is the function formGetMasterPassengerAnalyseData of the file /goform/getMasterPassengerAnalyseData. The manipulation of the argument Time leads to stack-based buffer overflow. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
Possible buffer overflow due to improper parsing of headers while playing the FLAC audio clip in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Voice & Music, Snapdragon Wearables, Snapdragon Wired Infrastructure and Networking
Wind River VxWorks 6.9 and vx7 has a Buffer Overflow in the TCP component (issue 2 of 4). This is an IPNET security vulnerability: TCP Urgent Pointer state confusion caused by a malformed TCP AO option.
There are buffer overflow vulnerabilities in multiple underlying services that could lead to unauthenticated remote code execution by sending specially crafted packets destined to the PAPI (Aruba's access point management protocol) UDP port (8211). Successful exploitation of these vulnerabilities result in the ability to execute arbitrary code as a privileged user on the underlying operating system.
dhcpcd before 7.2.1 contains a buffer overflow in dhcp6_findna in dhcp6.c when reading NA/TA addresses.
There are buffer overflow vulnerabilities in multiple underlying operating system processes that could lead to unauthenticated remote code execution by sending specially crafted packets via the PAPI protocol. Successful exploitation of these vulnerabilities result in the ability to execute arbitrary code as a privileged user on the underlying operating system.
There are buffer overflow vulnerabilities in multiple underlying operating system processes that could lead to unauthenticated remote code execution by sending specially crafted packets via the PAPI protocol. Successful exploitation of these vulnerabilities result in the ability to execute arbitrary code as a privileged user on the underlying operating system.
The `Toybox.GenericChannel.setDeviceConfig` API method in CIQ API version 1.2.0 through 4.1.7 does not validate its parameter, which can result in buffer overflows when copying various attributes. A malicious application could call the API method with specially crafted object and hijack the execution of the device's firmware.
Insufficient boundary checks when processing the JPEG APP12 block marker in the GD extension could allow access to out-of-bounds memory via a maliciously constructed invalid JPEG input. This issue affects HHVM versions prior to 3.30.9, all versions between 4.0.0 and 4.8.3, all versions between 4.9.0 and 4.15.2, and versions 4.16.0 to 4.16.3, 4.17.0 to 4.17.2, 4.18.0 to 4.18.1, 4.19.0, 4.20.0 to 4.20.1.
The `Toybox.Ant.GenericChannel.enableEncryption` API method in CIQ API version 3.2.0 through 4.1.7 does not validate its parameter, which can result in buffer overflows when copying various attributes. A malicious application could call the API method with specially crafted object and hijack the execution of the device's firmware.
There are buffer overflow vulnerabilities in multiple underlying operating system processes that could lead to unauthenticated remote code execution by sending specially crafted packets via the PAPI protocol. Successful exploitation of these vulnerabilities result in the ability to execute arbitrary code as a privileged user on the underlying operating system.
Incorrect reading of system image resulting in buffer overflow when size of system image is increased in Snapdragon Auto, Snapdragon Mobile, Snapdragon Wearables in MDM9607, MSM8909W, Qualcomm 215, SD 210/SD 212/SD 205, SD 425, SD 439 / SD 429, SD 450, SD 625, SD 632, SDM439
Das U-Boot 2016.11-rc1 through 2019.04 mishandles the ext4 64-bit extension, resulting in a buffer overflow.