Issue summary: Processing a maliciously formatted PKCS12 file may lead OpenSSL to crash leading to a potential Denial of Service attack Impact summary: Applications loading files in the PKCS12 format from untrusted sources might terminate abruptly. A file in PKCS12 format can contain certificates and keys and may come from an untrusted source. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly check for this case. This can lead to a NULL pointer dereference that results in OpenSSL crashing. If an application processes PKCS12 files from an untrusted source using the OpenSSL APIs then that application will be vulnerable to this issue. OpenSSL APIs that are vulnerable to this are: PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes() and PKCS12_newpass(). We have also fixed a similar issue in SMIME_write_PKCS7(). However since this function is related to writing data we do not consider it security significant. The FIPS modules in 3.2, 3.1 and 3.0 are not affected by this issue.
Issue summary: A type confusion vulnerability exists in the signature verification of signed PKCS#7 data where an ASN1_TYPE union member is accessed without first validating the type, causing an invalid or NULL pointer dereference when processing malformed PKCS#7 data. Impact summary: An application performing signature verification of PKCS#7 data or calling directly the PKCS7_digest_from_attributes() function can be caused to dereference an invalid or NULL pointer when reading, resulting in a Denial of Service. The function PKCS7_digest_from_attributes() accesses the message digest attribute value without validating its type. When the type is not V_ASN1_OCTET_STRING, this results in accessing invalid memory through the ASN1_TYPE union, causing a crash. Exploiting this vulnerability requires an attacker to provide a malformed signed PKCS#7 to an application that verifies it. The impact of the exploit is just a Denial of Service, the PKCS7 API is legacy and applications should be using the CMS API instead. For these reasons the issue was assessed as Low severity. The FIPS modules in 3.5, 3.4, 3.3 and 3.0 are not affected by this issue, as the PKCS#7 parsing implementation is outside the OpenSSL FIPS module boundary. OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0, 1.1.1 and 1.0.2 are vulnerable to this issue.
Issue summary: A type confusion vulnerability exists in the TimeStamp Response verification code where an ASN1_TYPE union member is accessed without first validating the type, causing an invalid or NULL pointer dereference when processing a malformed TimeStamp Response file. Impact summary: An application calling TS_RESP_verify_response() with a malformed TimeStamp Response can be caused to dereference an invalid or NULL pointer when reading, resulting in a Denial of Service. The functions ossl_ess_get_signing_cert() and ossl_ess_get_signing_cert_v2() access the signing cert attribute value without validating its type. When the type is not V_ASN1_SEQUENCE, this results in accessing invalid memory through the ASN1_TYPE union, causing a crash. Exploiting this vulnerability requires an attacker to provide a malformed TimeStamp Response to an application that verifies timestamp responses. The TimeStamp protocol (RFC 3161) is not widely used and the impact of the exploit is just a Denial of Service. For these reasons the issue was assessed as Low severity. The FIPS modules in 3.5, 3.4, 3.3 and 3.0 are not affected by this issue, as the TimeStamp Response implementation is outside the OpenSSL FIPS module boundary. OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0 and 1.1.1 are vulnerable to this issue. OpenSSL 1.0.2 is not affected by this issue.
Issue summary: Generating excessively long X9.42 DH keys or checking excessively long X9.42 DH keys or parameters may be very slow. Impact summary: Applications that use the functions DH_generate_key() to generate an X9.42 DH key may experience long delays. Likewise, applications that use DH_check_pub_key(), DH_check_pub_key_ex() or EVP_PKEY_public_check() to check an X9.42 DH key or X9.42 DH parameters may experience long delays. Where the key or parameters that are being checked have been obtained from an untrusted source this may lead to a Denial of Service. While DH_check() performs all the necessary checks (as of CVE-2023-3817), DH_check_pub_key() doesn't make any of these checks, and is therefore vulnerable for excessively large P and Q parameters. Likewise, while DH_generate_key() performs a check for an excessively large P, it doesn't check for an excessively large Q. An application that calls DH_generate_key() or DH_check_pub_key() and supplies a key or parameters obtained from an untrusted source could be vulnerable to a Denial of Service attack. DH_generate_key() and DH_check_pub_key() are also called by a number of other OpenSSL functions. An application calling any of those other functions may similarly be affected. The other functions affected by this are DH_check_pub_key_ex(), EVP_PKEY_public_check(), and EVP_PKEY_generate(). Also vulnerable are the OpenSSL pkey command line application when using the "-pubcheck" option, as well as the OpenSSL genpkey command line application. The OpenSSL SSL/TLS implementation is not affected by this issue. The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue.
An exploitable denial of service vulnerability exists in the object lookup functionality of Yara 3.8.1. A specially crafted binary file can cause a negative value to be read to satisfy an assert, resulting in Denial of Service. An attacker can create a malicious binary to trigger this vulnerability.
vmir e8117 was discovered to contain a segmentation violation via the import_function function at /src/vmir_wasm_parser.c.
vmir e8117 was discovered to contain a segmentation violation via the export_function function at /src/vmir_wasm_parser.c.
IrfanView 4.53 allows a Exception Handler Chain to be Corrupted starting at EXR!ReadEXR+0x000000000002af80.
vmir e8117 was discovered to contain a segmentation violation via the wasm_parse_block function at /src/vmir_wasm_parser.c.
XPDF commit ffaf11c was discovered to contain a segmentation violation via Lexer::getObj(Object*) at /xpdf/Lexer.cc.
SWFMill commit 53d7690 was discovered to contain a segmentation violation via SWF::Reader::getWord().
XPDF commit ffaf11c was discovered to contain a segmentation violation via DCTStream::getChar() at /xpdf/Stream.cc.
XPDF commit ffaf11c was discovered to contain a segmentation violation via DCTStream::readMCURow() at /xpdf/Stream.cc.
SWFMill commit 53d7690 was discovered to contain a segmentation violation via SWF::DeclareFunction2::write(SWF::Writer*, SWF::Context*).
SWFMill commit 53d7690 was discovered to contain a segmentation violation via SWF::MethodBody::write(SWF::Writer*, SWF::Context*).
WebAssembly Micro Runtime (WAMR) is a lightweight standalone WebAssembly (Wasm) runtime. Prior to version 2.4.4, WAMR is susceptible to a segmentation fault in v128.store instruction. This issue has been patched in version 2.4.4.
The issue was addressed with improved checks. This issue is fixed in iPadOS 17.7.4, macOS Sonoma 14.7.3, visionOS 2.3, iOS 18.3 and iPadOS 18.3, macOS Sequoia 15.3, watchOS 11.3, tvOS 18.3. Parsing a file may lead to an unexpected app termination.