A flaw was found in FFmpeg’s TensorFlow backend within the libavfilter/dnn_backend_tf.c source file. The issue occurs in the dnn_execute_model_tf() function, where a task object is freed multiple times in certain error-handling paths. This redundant memory deallocation can lead to a double-free condition, potentially causing FFmpeg or any application using it to crash when processing TensorFlow-based DNN models. This results in a denial-of-service scenario but does not allow arbitrary code execution under normal conditions.
MuPDF versions 1.23.0 through 1.27.0 contain a double-free vulnerability in fz_fill_pixmap_from_display_list() when an exception occurs during display list rendering. The function accepts a caller-owned fz_pixmap pointer but incorrectly drops the pixmap in its error handling path before rethrowing the exception. Callers (including the barcode decoding path in fz_decode_barcode_from_display_list) also drop the same pixmap in cleanup, resulting in a double-free that can corrupt the heap and crash the process. This issue affects applications that enable and use MuPDF barcode decoding and can be triggered by processing crafted input that causes a rendering-time error while decoding barcodes.
In imgsys, there is a possible memory corruption due to improper locking. This could lead to local denial of service if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10363254; Issue ID: MSV-5617.
ImageMagick is free and open-source software used for editing and manipulating digital images. The BilateralBlurImage method will allocate a set of double buffers inside AcquireBilateralTLS. But, in versions prior to 7.1.2-13, the last element in the set is not properly initialized. This will result in a release of an invalid pointer inside DestroyBilateralTLS when the memory allocation fails. Version 7.1.2-13 contains a patch for the issue.
Invalid free in CPCA file deletion processing on Small Office Multifunction Printers and Laser Printers(*) which may allow an attacker on the network segment to trigger the affected product being unresponsive or to execute arbitrary code. *: Satera LBP670C Series/Satera MF750C Series firmware v06.02 and earlier sold in Japan.Color imageCLASS LBP630C/Color imageCLASS MF650C Series/imageCLASS LBP230 Series/imageCLASS X LBP1238 II/imageCLASS MF450 Series/imageCLASS X MF1238 II/imageCLASS X MF1643i II/imageCLASS X MF1643iF II firmware v06.02 and earlier sold in US.i-SENSYS LBP630C Series/i-SENSYS MF650C Series/i-SENSYS LBP230 Series/1238P II/1238Pr II/i-SENSYS MF450 Series/i-SENSYS MF550 Series/1238i II/1238iF II/imageRUNNER 1643i II/imageRUNNER 1643iF II firmware v06.02 and earlier sold in Europe.
A Double Free vulnerability in the flow processing daemon (flowd) of Juniper Networks Junos OS on SRX and MX Series allows an unauthenticated, network-based attacker to cause a Denial-of-Service (DoS). On all SRX and MX Series platforms, when during TCP session establishment a specific sequence of packets is encountered a double free happens. This causes flowd to crash and the respective FPC to restart. This issue affects Junos OS on SRX and MX Series: * all versions before 22.4R3-S7, * 23.2 versions before 23.2R2-S3, * 23.4 versions before 23.4R2-S4, * 24.2 versions before 24.2R2.
CWE-415: Double Free vulnerability exists that could cause heap memory corruption when the end user imports a malicious project file (SSD file) shared by the attacker into Rapsody.
Double free vulnerability in the multi-mode input module. Impact: Successful exploitation of this vulnerability may affect the input function.
Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Management Services allows an authorized attacker to elevate privileges locally.
Double free in Windows Win32K - ICOMP allows an authorized attacker to elevate privileges locally.
Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Management Services allows an authorized attacker to elevate privileges locally.
Windows Remote Procedure Call Interface Definition Language (IDL) Elevation of Privilege Vulnerability
Free of memory not on the heap in Windows Ancillary Function Driver for WinSock allows an authorized attacker to elevate privileges locally.
Espressif ESP-IDF USB Host HID (Human Interface Device) Driver allows access to HID devices. Prior to 1.1.0, calls to hid_host_device_close() can free the same usb_transfer_t twice. The USB event callback and user code share the hid_iface_t state without locking, so both can tear down a READY interface simultaneously, corrupting heap metadata inside the ESP USB host stack. This vulnerability is fixed in 1.1.0.
Multiple Cisco products are affected by a vulnerability in the processing of DCE/RPC requests that could allow an unauthenticated, remote attacker to cause the Snort 3 Detection Engine to leak sensitive information or to restart, resulting in an interruption of packet inspection. This vulnerability is due to an error in buffer handling logic when processing DCE/RPC requests, which can result in a buffer use-after-free read. An attacker could exploit this vulnerability by sending a large number of DCE/RPC requests through an established connection that is inspected by Snort 3. A successful exploit could allow the attacker to unexpectedly restart the Snort 3 Detection Engine, which could cause a denial of service (DoS).
Memory corruption occurs when a secure application is launched on a device with insufficient memory.
Memory Corruption when multiple threads concurrently access and modify shared resources.
Release of Invalid Pointer or Reference vulnerability was discovered in fs/inode/fs_inoderemove code of the Apache NuttX RTOS that allowed root filesystem inode removal leading to a debug assert trigger (that is disabled by default), NULL pointer dereference (handled differently depending on the target architecture), or in general, a Denial of Service. This issue affects Apache NuttX RTOS: from 10.0.0 before 12.10.0. Users of filesystem based services with write access that were exposed over the network (i.e. FTP) are affected and recommended to upgrade to version 12.10.0 that fixes the issue.
A security issue exists due to improper handling of malformed CIP packets during fuzzing. The controller enters a hard fault with solid red Fault LED and becomes unresponsive. Upon power cycle, the controller will enter recoverable fault where the MS LED and Fault LED become flashing red and reports fault code 0xF019. To recover, clear the fault.
In aocc_read of aoc_channel_dev.c, there is a possible double free due to improper locking. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
Concurrent execution using shared resource with improper synchronization ('race condition') in Microsoft Brokering File System allows an authorized attacker to elevate privileges locally.
A memory corruption vulnerability in WatchGuard Fireware OS may allow an unauthenticated attacker to trigger a Denial of Service (DoS) condition in the Mobile User VPN with IKEv2 and the Branch Office VPN using IKEv2 when configured with a dynamic gateway peer. This vulnerability affects Fireware OS 12.6.1 up to and including 12.11.4 and 2025.1 up to and including 2025.1.2.
ImageMagick is free and open-source software used for editing and manipulating digital images. Prior to 7.1.2-9 and 6.9.13-34, there is a vulnerability in ImageMagick’s Magick++ layer that manifests when Options::fontFamily is invoked with an empty string. Clearing a font family calls RelinquishMagickMemory on _drawInfo->font, freeing the font string but leaving _drawInfo->font pointing to freed memory while _drawInfo->family is set to that (now-invalid) pointer. Any later cleanup or reuse of _drawInfo->font re-frees or dereferences dangling memory. DestroyDrawInfo and other setters (Options::font, Image::font) assume _drawInfo->font remains valid, so destruction or subsequent updates trigger crashes or heap corruption. This vulnerability is fixed in 7.1.2-9 and 6.9.13-34.
A security vulnerability has been detected in jarun nnn up to 5.1. The impacted element is the function show_content_in_floating_window/run_cmd_as_plugin of the file nnn/src/nnn.c. The manipulation leads to double free. An attack has to be approached locally. The identifier of the patch is 2f07ccdf21e705377862e5f9dfa31e1694979ac7. It is suggested to install a patch to address this issue.
Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Kernel allows an authorized attacker to elevate privileges locally.
Double free in Microsoft Wireless Provisioning System allows an authorized attacker to elevate privileges locally.
Double free in Windows Smart Card allows an authorized attacker to elevate privileges locally.
An issue was discovered in NPU in Samsung Mobile Processor Exynos 1380 through July 2025. There is an Invalid Pointer Dereference of node in the get_vs4l_profiler_node function.
A double free issue was addressed with improved memory management. This issue is fixed in macOS Sequoia 15.6, iOS 18.6 and iPadOS 18.6, watchOS 11.6, tvOS 18.6, visionOS 2.6, macOS Ventura 13.7.7, macOS Sonoma 14.7.7, iPadOS 17.7.9. An app may be able to cause unexpected system termination.
When using a multi-bladed platform with more than one blade, undisclosed traffic can cause the Traffic Management Microkernel (TMM) to terminate. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
Double free in Windows Bluetooth Service allows an authorized attacker to elevate privileges locally.
NVIDIA Display Driver for Linux contains a vulnerability where an attacker might be able to use a race condition to escalate privileges. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service, and information disclosure.
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix mr->map double free rxe_mr_cleanup() which tries to free mr->map again will be called when rxe_mr_init_user() fails: CPU: 0 PID: 4917 Comm: rdma_flush_serv Kdump: loaded Not tainted 6.1.0-rc1-roce-flush+ #25 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x45/0x5d panic+0x19e/0x349 end_report.part.0+0x54/0x7c kasan_report.cold+0xa/0xf rxe_mr_cleanup+0x9d/0xf0 [rdma_rxe] __rxe_cleanup+0x10a/0x1e0 [rdma_rxe] rxe_reg_user_mr+0xb7/0xd0 [rdma_rxe] ib_uverbs_reg_mr+0x26a/0x480 [ib_uverbs] ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x1a2/0x250 [ib_uverbs] ib_uverbs_cmd_verbs+0x1397/0x15a0 [ib_uverbs] This issue was firstly exposed since commit b18c7da63fcb ("RDMA/rxe: Fix memory leak in error path code") and then we fixed it in commit 8ff5f5d9d8cf ("RDMA/rxe: Prevent double freeing rxe_map_set()") but this fix was reverted together at last by commit 1e75550648da (Revert "RDMA/rxe: Create duplicate mapping tables for FMRs") Simply let rxe_mr_cleanup() always handle freeing the mr->map once it is successfully allocated.
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix repeated calls to sock_put() when msg has more_data In tcp_bpf_send_verdict() redirection, the eval variable is assigned to __SK_REDIRECT after the apply_bytes data is sent, if msg has more_data, sock_put() will be called multiple times. We should reset the eval variable to __SK_NONE every time more_data starts. This causes: IPv4: Attempt to release TCP socket in state 1 00000000b4c925d7 ------------[ cut here ]------------ refcount_t: addition on 0; use-after-free. WARNING: CPU: 5 PID: 4482 at lib/refcount.c:25 refcount_warn_saturate+0x7d/0x110 Modules linked in: CPU: 5 PID: 4482 Comm: sockhash_bypass Kdump: loaded Not tainted 6.0.0 #1 Hardware name: Red Hat KVM, BIOS 1.11.0-2.el7 04/01/2014 Call Trace: <TASK> __tcp_transmit_skb+0xa1b/0xb90 ? __alloc_skb+0x8c/0x1a0 ? __kmalloc_node_track_caller+0x184/0x320 tcp_write_xmit+0x22a/0x1110 __tcp_push_pending_frames+0x32/0xf0 do_tcp_sendpages+0x62d/0x640 tcp_bpf_push+0xae/0x2c0 tcp_bpf_sendmsg_redir+0x260/0x410 ? preempt_count_add+0x70/0xa0 tcp_bpf_send_verdict+0x386/0x4b0 tcp_bpf_sendmsg+0x21b/0x3b0 sock_sendmsg+0x58/0x70 __sys_sendto+0xfa/0x170 ? xfd_validate_state+0x1d/0x80 ? switch_fpu_return+0x59/0xe0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x37/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd
In the Linux kernel, the following vulnerability has been resolved: ext4: fix possible double unlock when moving a directory
In the Linux kernel, the following vulnerability has been resolved: jfs: fix invalid free of JFS_IP(ipimap)->i_imap in diUnmount syzbot found an invalid-free in diUnmount: BUG: KASAN: double-free in slab_free mm/slub.c:3661 [inline] BUG: KASAN: double-free in __kmem_cache_free+0x71/0x110 mm/slub.c:3674 Free of addr ffff88806f410000 by task syz-executor131/3632 CPU: 0 PID: 3632 Comm: syz-executor131 Not tainted 6.1.0-rc7-syzkaller-00012-gca57f02295f1 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106 print_address_description+0x74/0x340 mm/kasan/report.c:284 print_report+0x107/0x1f0 mm/kasan/report.c:395 kasan_report_invalid_free+0xac/0xd0 mm/kasan/report.c:460 ____kasan_slab_free+0xfb/0x120 kasan_slab_free include/linux/kasan.h:177 [inline] slab_free_hook mm/slub.c:1724 [inline] slab_free_freelist_hook+0x12e/0x1a0 mm/slub.c:1750 slab_free mm/slub.c:3661 [inline] __kmem_cache_free+0x71/0x110 mm/slub.c:3674 diUnmount+0xef/0x100 fs/jfs/jfs_imap.c:195 jfs_umount+0x108/0x370 fs/jfs/jfs_umount.c:63 jfs_put_super+0x86/0x190 fs/jfs/super.c:194 generic_shutdown_super+0x130/0x310 fs/super.c:492 kill_block_super+0x79/0xd0 fs/super.c:1428 deactivate_locked_super+0xa7/0xf0 fs/super.c:332 cleanup_mnt+0x494/0x520 fs/namespace.c:1186 task_work_run+0x243/0x300 kernel/task_work.c:179 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x664/0x2070 kernel/exit.c:820 do_group_exit+0x1fd/0x2b0 kernel/exit.c:950 __do_sys_exit_group kernel/exit.c:961 [inline] __se_sys_exit_group kernel/exit.c:959 [inline] __x64_sys_exit_group+0x3b/0x40 kernel/exit.c:959 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] JFS_IP(ipimap)->i_imap is not setting to NULL after free in diUnmount. If jfs_remount() free JFS_IP(ipimap)->i_imap but then failed at diMount(). JFS_IP(ipimap)->i_imap will be freed once again. Fix this problem by setting JFS_IP(ipimap)->i_imap to NULL after free.
In the Linux kernel, the following vulnerability has been resolved: drivers: base: Free devm resources when unregistering a device In the current code, devres_release_all() only gets called if the device has a bus and has been probed. This leads to issues when using bus-less or driver-less devices where the device might never get freed if a managed resource holds a reference to the device. This is happening in the DRM framework for example. We should thus call devres_release_all() in the device_del() function to make sure that the device-managed actions are properly executed when the device is unregistered, even if it has neither a bus nor a driver. This is effectively the same change than commit 2f8d16a996da ("devres: release resources on device_del()") that got reverted by commit a525a3ddeaca ("driver core: free devres in device_release") over memory leaks concerns. This patch effectively combines the two commits mentioned above to release the resources both on device_del() and device_release() and get the best of both worlds.
In the Linux kernel, the following vulnerability has been resolved: scsi: target: Fix multiple LUN_RESET handling This fixes a bug where an initiator thinks a LUN_RESET has cleaned up running commands when it hasn't. The bug was added in commit 51ec502a3266 ("target: Delete tmr from list before processing"). The problem occurs when: 1. We have N I/O cmds running in the target layer spread over 2 sessions. 2. The initiator sends a LUN_RESET for each session. 3. session1's LUN_RESET loops over all the running commands from both sessions and moves them to its local drain_task_list. 4. session2's LUN_RESET does not see the LUN_RESET from session1 because the commit above has it remove itself. session2 also does not see any commands since the other reset moved them off the state lists. 5. sessions2's LUN_RESET will then complete with a successful response. 6. sessions2's inititor believes the running commands on its session are now cleaned up due to the successful response and cleans up the running commands from its side. It then restarts them. 7. The commands do eventually complete on the backend and the target starts to return aborted task statuses for them. The initiator will either throw a invalid ITT error or might accidentally lookup a new task if the ITT has been reallocated already. Fix the bug by reverting the patch, and serialize the execution of LUN_RESETs and Preempt and Aborts. Also prevent us from waiting on LUN_RESETs in core_tmr_drain_tmr_list, because it turns out the original patch fixed a bug that was not mentioned. For LUN_RESET1 core_tmr_drain_tmr_list can see a second LUN_RESET and wait on it. Then the second reset will run core_tmr_drain_tmr_list and see the first reset and wait on it resulting in a deadlock.
In the Linux kernel, the following vulnerability has been resolved: media: dvb-core: Fix double free in dvb_register_device() In function dvb_register_device() -> dvb_register_media_device() -> dvb_create_media_entity(), dvb->entity is allocated and initialized. If the initialization fails, it frees the dvb->entity, and return an error code. The caller takes the error code and handles the error by calling dvb_media_device_free(), which unregisters the entity and frees the field again if it is not NULL. As dvb->entity may not NULLed in dvb_create_media_entity() when the allocation of dvbdev->pad fails, a double free may occur. This may also cause an Use After free in media_device_unregister_entity(). Fix this by storing NULL to dvb->entity when it is freed.
In the Linux kernel, the following vulnerability has been resolved: xhci: Remove device endpoints from bandwidth list when freeing the device Endpoints are normally deleted from the bandwidth list when they are dropped, before the virt device is freed. If xHC host is dying or being removed then the endpoints aren't dropped cleanly due to functions returning early to avoid interacting with a non-accessible host controller. So check and delete endpoints that are still on the bandwidth list when freeing the virt device. Solves a list_del corruption kernel crash when unbinding xhci-pci, caused by xhci_mem_cleanup() when it later tried to delete already freed endpoints from the bandwidth list. This only affects hosts that use software bandwidth checking, which currenty is only the xHC in intel Panther Point PCH (Ivy Bridge)
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix handling of lrbp->cmd ufshcd_queuecommand() may be called two times in a row for a SCSI command before it is completed. Hence make the following changes: - In the functions that submit a command, do not check the old value of lrbp->cmd nor clear lrbp->cmd in error paths. - In ufshcd_release_scsi_cmd(), do not clear lrbp->cmd. See also scsi_send_eh_cmnd(). This commit prevents that the following appears if a command times out: WARNING: at drivers/ufs/core/ufshcd.c:2965 ufshcd_queuecommand+0x6f8/0x9a8 Call trace: ufshcd_queuecommand+0x6f8/0x9a8 scsi_send_eh_cmnd+0x2c0/0x960 scsi_eh_test_devices+0x100/0x314 scsi_eh_ready_devs+0xd90/0x114c scsi_error_handler+0x2b4/0xb70 kthread+0x16c/0x1e0
In the Linux kernel, the following vulnerability has been resolved: tracing: Silence warning when chunk allocation fails in trace_pid_write Syzkaller trigger a fault injection warning: WARNING: CPU: 1 PID: 12326 at tracepoint_add_func+0xbfc/0xeb0 Modules linked in: CPU: 1 UID: 0 PID: 12326 Comm: syz.6.10325 Tainted: G U 6.14.0-rc5-syzkaller #0 Tainted: [U]=USER Hardware name: Google Compute Engine/Google Compute Engine RIP: 0010:tracepoint_add_func+0xbfc/0xeb0 kernel/tracepoint.c:294 Code: 09 fe ff 90 0f 0b 90 0f b6 74 24 43 31 ff 41 bc ea ff ff ff RSP: 0018:ffffc9000414fb48 EFLAGS: 00010283 RAX: 00000000000012a1 RBX: ffffffff8e240ae0 RCX: ffffc90014b78000 RDX: 0000000000080000 RSI: ffffffff81bbd78b RDI: 0000000000000001 RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000001 R12: ffffffffffffffef R13: 0000000000000000 R14: dffffc0000000000 R15: ffffffff81c264f0 FS: 00007f27217f66c0(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b2e80dff8 CR3: 00000000268f8000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> tracepoint_probe_register_prio+0xc0/0x110 kernel/tracepoint.c:464 register_trace_prio_sched_switch include/trace/events/sched.h:222 [inline] register_pid_events kernel/trace/trace_events.c:2354 [inline] event_pid_write.isra.0+0x439/0x7a0 kernel/trace/trace_events.c:2425 vfs_write+0x24c/0x1150 fs/read_write.c:677 ksys_write+0x12b/0x250 fs/read_write.c:731 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f We can reproduce the warning by following the steps below: 1. echo 8 >> set_event_notrace_pid. Let tr->filtered_pids owns one pid and register sched_switch tracepoint. 2. echo ' ' >> set_event_pid, and perform fault injection during chunk allocation of trace_pid_list_alloc. Let pid_list with no pid and assign to tr->filtered_pids. 3. echo ' ' >> set_event_pid. Let pid_list is NULL and assign to tr->filtered_pids. 4. echo 9 >> set_event_pid, will trigger the double register sched_switch tracepoint warning. The reason is that syzkaller injects a fault into the chunk allocation in trace_pid_list_alloc, causing a failure in trace_pid_list_set, which may trigger double register of the same tracepoint. This only occurs when the system is about to crash, but to suppress this warning, let's add failure handling logic to trace_pid_list_set.
Memory corruption while handling invalid inputs in application info setup.
Memory corruption due to double free when multiple threads race to set the timestamp store.
In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: Fix double free in idxd_setup_wqs() The clean up in idxd_setup_wqs() has had a couple bugs because the error handling is a bit subtle. It's simpler to just re-write it in a cleaner way. The issues here are: 1) If "idxd->max_wqs" is <= 0 then we call put_device(conf_dev) when "conf_dev" hasn't been initialized. 2) If kzalloc_node() fails then again "conf_dev" is invalid. It's either uninitialized or it points to the "conf_dev" from the previous iteration so it leads to a double free. It's better to free partial loop iterations within the loop and then the unwinding at the end can handle whole loop iterations. I also renamed the labels to describe what the goto does and not where the goto was located.
Within tcpreplay's tcprewrite, a double free vulnerability has been identified in the dlt_linuxsll2_cleanup() function in plugins/dlt_linuxsll2/linuxsll2.c. This vulnerability is triggered when tcpedit_dlt_cleanup() indirectly invokes the cleanup routine multiple times on the same memory region. By supplying a specifically crafted pcap file to the tcprewrite binary, a local attacker can exploit this flaw to cause a Denial of Service (DoS) via memory corruption.
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sysfs: Fix attempting to call device_add multiple times device_add shall not be called multiple times as stated in its documentation: 'Do not call this routine or device_register() more than once for any device structure' Syzkaller reports a bug as follows [1]: ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:33! invalid opcode: 0000 [#1] PREEMPT SMP KASAN [...] Call Trace: <TASK> __list_add include/linux/list.h:69 [inline] list_add_tail include/linux/list.h:102 [inline] kobj_kset_join lib/kobject.c:164 [inline] kobject_add_internal+0x18f/0x8f0 lib/kobject.c:214 kobject_add_varg lib/kobject.c:358 [inline] kobject_add+0x150/0x1c0 lib/kobject.c:410 device_add+0x368/0x1e90 drivers/base/core.c:3452 hci_conn_add_sysfs+0x9b/0x1b0 net/bluetooth/hci_sysfs.c:53 hci_le_cis_estabilished_evt+0x57c/0xae0 net/bluetooth/hci_event.c:6799 hci_le_meta_evt+0x2b8/0x510 net/bluetooth/hci_event.c:7110 hci_event_func net/bluetooth/hci_event.c:7440 [inline] hci_event_packet+0x63d/0xfd0 net/bluetooth/hci_event.c:7495 hci_rx_work+0xae7/0x1230 net/bluetooth/hci_core.c:4007 process_one_work+0x991/0x1610 kernel/workqueue.c:2289 worker_thread+0x665/0x1080 kernel/workqueue.c:2436 kthread+0x2e4/0x3a0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306 </TASK>
In the Linux kernel, the following vulnerability has been resolved: nfsd: under NFSv4.1, fix double svc_xprt_put on rpc_create failure On error situation `clp->cl_cb_conn.cb_xprt` should not be given a reference to the xprt otherwise both client cleanup and the error handling path of the caller call to put it. Better to delay handing over the reference to a later branch. [ 72.530665] refcount_t: underflow; use-after-free. [ 72.531933] WARNING: CPU: 0 PID: 173 at lib/refcount.c:28 refcount_warn_saturate+0xcf/0x120 [ 72.533075] Modules linked in: nfsd(OE) nfsv4(OE) nfsv3(OE) nfs(OE) lockd(OE) compat_nfs_ssc(OE) nfs_acl(OE) rpcsec_gss_krb5(OE) auth_rpcgss(OE) rpcrdma(OE) dns_resolver fscache netfs grace rdma_cm iw_cm ib_cm sunrpc(OE) mlx5_ib mlx5_core mlxfw pci_hyperv_intf ib_uverbs ib_core xt_MASQUERADE nf_conntrack_netlink nft_counter xt_addrtype nft_compat br_netfilter bridge stp llc nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set overlay nf_tables nfnetlink crct10dif_pclmul crc32_pclmul ghash_clmulni_intel xfs serio_raw virtio_net virtio_blk net_failover failover fuse [last unloaded: sunrpc] [ 72.540389] CPU: 0 PID: 173 Comm: kworker/u16:5 Tainted: G OE 5.15.82-dan #1 [ 72.541511] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-3.module+el8.7.0+1084+97b81f61 04/01/2014 [ 72.542717] Workqueue: nfsd4_callbacks nfsd4_run_cb_work [nfsd] [ 72.543575] RIP: 0010:refcount_warn_saturate+0xcf/0x120 [ 72.544299] Code: 55 00 0f 0b 5d e9 01 50 98 00 80 3d 75 9e 39 08 00 0f 85 74 ff ff ff 48 c7 c7 e8 d1 60 8e c6 05 61 9e 39 08 01 e8 f6 51 55 00 <0f> 0b 5d e9 d9 4f 98 00 80 3d 4b 9e 39 08 00 0f 85 4c ff ff ff 48 [ 72.546666] RSP: 0018:ffffb3f841157cf0 EFLAGS: 00010286 [ 72.547393] RAX: 0000000000000026 RBX: ffff89ac6231d478 RCX: 0000000000000000 [ 72.548324] RDX: ffff89adb7c2c2c0 RSI: ffff89adb7c205c0 RDI: ffff89adb7c205c0 [ 72.549271] RBP: ffffb3f841157cf0 R08: 0000000000000000 R09: c0000000ffefffff [ 72.550209] R10: 0000000000000001 R11: ffffb3f841157ad0 R12: ffff89ac6231d180 [ 72.551142] R13: ffff89ac6231d478 R14: ffff89ac40c06180 R15: ffff89ac6231d4b0 [ 72.552089] FS: 0000000000000000(0000) GS:ffff89adb7c00000(0000) knlGS:0000000000000000 [ 72.553175] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 72.553934] CR2: 0000563a310506a8 CR3: 0000000109a66000 CR4: 0000000000350ef0 [ 72.554874] Call Trace: [ 72.555278] <TASK> [ 72.555614] svc_xprt_put+0xaf/0xe0 [sunrpc] [ 72.556276] nfsd4_process_cb_update.isra.11+0xb7/0x410 [nfsd] [ 72.557087] ? update_load_avg+0x82/0x610 [ 72.557652] ? cpuacct_charge+0x60/0x70 [ 72.558212] ? dequeue_entity+0xdb/0x3e0 [ 72.558765] ? queued_spin_unlock+0x9/0x20 [ 72.559358] nfsd4_run_cb_work+0xfc/0x270 [nfsd] [ 72.560031] process_one_work+0x1df/0x390 [ 72.560600] worker_thread+0x37/0x3b0 [ 72.561644] ? process_one_work+0x390/0x390 [ 72.562247] kthread+0x12f/0x150 [ 72.562710] ? set_kthread_struct+0x50/0x50 [ 72.563309] ret_from_fork+0x22/0x30 [ 72.563818] </TASK> [ 72.564189] ---[ end trace 031117b1c72ec616 ]--- [ 72.566019] list_add corruption. next->prev should be prev (ffff89ac4977e538), but was ffff89ac4763e018. (next=ffff89ac4763e018). [ 72.567647] ------------[ cut here ]------------
In the Linux kernel, the following vulnerability has been resolved: NFSv4.2: Rework scratch handling for READ_PLUS (again) I found that the read code might send multiple requests using the same nfs_pgio_header, but nfs4_proc_read_setup() is only called once. This is how we ended up occasionally double-freeing the scratch buffer, but also means we set a NULL pointer but non-zero length to the xdr scratch buffer. This results in an oops the first time decoding needs to copy something to scratch, which frequently happens when decoding READ_PLUS hole segments. I fix this by moving scratch handling into the pageio read code. I provide a function to allocate scratch space for decoding read replies, and free the scratch buffer when the nfs_pgio_header is freed.
In the Linux kernel, the following vulnerability has been resolved: net: fec: Better handle pm_runtime_get() failing in .remove() In the (unlikely) event that pm_runtime_get() (disguised as pm_runtime_resume_and_get()) fails, the remove callback returned an error early. The problem with this is that the driver core ignores the error value and continues removing the device. This results in a resource leak. Worse the devm allocated resources are freed and so if a callback of the driver is called later the register mapping is already gone which probably results in a crash.