A vulnerability in the Server Message Block Version 2 (SMBv2) and Version 3 (SMBv3) protocol implementation for the Cisco Firepower System Software could allow an unauthenticated, remote attacker to cause the device to run low on system memory, possibly preventing the device from forwarding traffic. It is also possible that a manual reload of the device may be required to clear the condition. The vulnerability is due to incorrect SMB header validation. An attacker could exploit this vulnerability by sending a custom SMB file transfer through the targeted device. A successful exploit could cause the device to consume an excessive amount of system memory and prevent the SNORT process from forwarding network traffic. This vulnerability can be exploited using either IPv4 or IPv6 in combination with SMBv2 or SMBv3 network traffic.
A vulnerability in the web interface of the Cisco Adaptive Security Appliance (ASA) could allow an unauthenticated, remote attacker to cause an affected device to reload unexpectedly, resulting in a denial of service (DoS) condition. It is also possible on certain software releases that the ASA will not reload, but an attacker could view sensitive system information without authentication by using directory traversal techniques. The vulnerability is due to lack of proper input validation of the HTTP URL. An attacker could exploit this vulnerability by sending a crafted HTTP request to an affected device. An exploit could allow the attacker to cause a DoS condition or unauthenticated disclosure of information. This vulnerability applies to IPv4 and IPv6 HTTP traffic. This vulnerability affects Cisco ASA Software and Cisco Firepower Threat Defense (FTD) Software that is running on the following Cisco products: 3000 Series Industrial Security Appliance (ISA), ASA 1000V Cloud Firewall, ASA 5500 Series Adaptive Security Appliances, ASA 5500-X Series Next-Generation Firewalls, ASA Services Module for Cisco Catalyst 6500 Series Switches and Cisco 7600 Series Routers, Adaptive Security Virtual Appliance (ASAv), Firepower 2100 Series Security Appliance, Firepower 4100 Series Security Appliance, Firepower 9300 ASA Security Module, FTD Virtual (FTDv). Cisco Bug IDs: CSCvi16029.
A vulnerability in TCP connection management in Cisco Prime Access Registrar could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition when the application unexpectedly restarts. The vulnerability is due to incorrect handling of incoming TCP SYN packets to specific listening ports. The improper handling of the TCP SYN packets could cause a system file description to be allocated and not freed. An attacker could exploit this vulnerability by sending a crafted stream of TCP SYN packets to the application. A successful exploit could allow the attacker to cause the application to eventually restart if a file description cannot be obtained.
A vulnerability in the TCP throttling process of Cisco Prime Network could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to insufficient rate limiting protection for TCP listening ports. An attacker could exploit this vulnerability by sending the affected device a high rate of TCP SYN packets to the local IP address of the targeted application. A successful exploit could allow the attacker to cause the device to consume a high amount of memory and become slow, or to stop accepting new TCP connections to the application. Cisco Bug IDs: CSCvg48152.
A vulnerability in the application server of the Cisco Unified Customer Voice Portal (CVP) could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on the affected device. The vulnerability is due to malformed SIP INVITE traffic received on the CVP during communications with the Cisco Virtualized Voice Browser (VVB). An attacker could exploit this vulnerability by sending malformed SIP INVITE traffic to the targeted appliance. An exploit could allow the attacker to impact the availability of services and data on the device, causing a DoS condition. This vulnerability affects Cisco Unified CVP running any software release prior to 11.6(1). Cisco Bug IDs: CSCve85840.
A vulnerability in management interface access control list (ACL) configuration of Cisco NX-OS System Software could allow an unauthenticated, remote attacker to bypass configured ACLs on the management interface. This could allow traffic to be forwarded to the NX-OS CPU for processing, leading to high CPU utilization and a denial of service (DoS) condition. The vulnerability is due to a bad code fix in the 7.3.2 code train that could allow traffic to the management interface to be misclassified and not match the proper configured ACLs. An attacker could exploit this vulnerability by sending crafted traffic to the management interface. An exploit could allow the attacker to bypass the configured management interface ACLs and impact the CPU of the targeted device, resulting in a DoS condition. This vulnerability affects the following Cisco products running Cisco NX-OS System Software: Multilayer Director Switches, Nexus 2000 Series Switches, Nexus 3000 Series Switches, Nexus 5500 Platform Switches, Nexus 5600 Platform Switches, Nexus 6000 Series Switches, Nexus 7000 Series Switches, Nexus 7700 Series Switches, Nexus 9000 Series Switches in standalone NX-OS mode. Cisco Bug IDs: CSCvf31132.
Cisco ONS 15454 controller cards with software 9.6 and earlier allow remote attackers to cause a denial of service (card reset) via a TCP FIN attack that triggers file-descriptor exhaustion and a failure to open a CAL pipe, aka Bug ID CSCug97348.
A vulnerability in the Cisco Fabric Services component of Cisco FXOS Software and Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on the affected device. The vulnerability exists because the affected software insufficiently validates Cisco Fabric Services packets. An attacker could exploit this vulnerability by sending a crafted Cisco Fabric Services packet to an affected device. A successful exploit could allow the attacker to force a NULL pointer dereference and cause a DoS condition. This vulnerability affects the following if configured to use Cisco Fabric Services: Firepower 4100 Series Next-Generation Firewalls, Firepower 9300 Security Appliance, MDS 9000 Series Multilayer Switches, Nexus 2000 Series Fabric Extenders, Nexus 3000 Series Switches, Nexus 3500 Platform Switches, Nexus 5500 Platform Switches, Nexus 5600 Platform Switches, Nexus 6000 Series Switches, Nexus 7000 Series Switches, Nexus 7700 Series Switches, Nexus 9000 Series Switches in standalone NX-OS mode, Nexus 9500 R-Series Line Cards and Fabric Modules, UCS 6100 Series Fabric Interconnects, UCS 6200 Series Fabric Interconnects, UCS 6300 Series Fabric Interconnects. Cisco Bug IDs: CSCvd69966, CSCve02435, CSCve04859, CSCve41590, CSCve41593, CSCve41601.
The DHCPv6 server module in Cisco CNS Network Registrar 7.1 allows remote attackers to cause a denial of service (daemon reload) via a malformed DHCPv6 packet, aka Bug ID CSCuo07437.
A vulnerability in the detection engine parsing of Security Socket Layer (SSL) protocol packets for Cisco Firepower System Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition due to the Snort process unexpectedly restarting. The vulnerability is due to improper input handling of the SSL traffic. An attacker could exploit this vulnerability by sending a crafted SSL traffic to the detection engine on the targeted device. An exploit could allow the attacker to cause a DoS condition if the Snort process restarts and traffic inspection is bypassed or traffic is dropped. Cisco Bug IDs: CSCvi36434.
A vulnerability in the Precision Time Protocol (PTP) subsystem of Cisco IOS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition of the Precision Time Protocol. The vulnerability is due to insufficient processing of PTP packets. An attacker could exploit this vulnerability by sending a custom PTP packet to, or through, an affected device. A successful exploit could allow the attacker to cause a DoS condition for the PTP subsystem, resulting in time synchronization issues across the network.
A vulnerability in the TCP throttling process for the GUI of the Cisco Identity Services Engine (ISE) 2.1(0.474) could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device where the ISE GUI may fail to respond to new or established connection requests. The vulnerability is due to insufficient TCP rate limiting protection on the GUI. An attacker could exploit this vulnerability by sending the affected device a high rate of TCP connections to the GUI. An exploit could allow the attacker to cause the GUI to stop responding while the high rate of connections is in progress. Cisco Bug IDs: CSCvc81803.
A vulnerability in the DNS input packet processor for Cisco Prime Network Registrar could allow an unauthenticated, remote attacker to cause the DNS process to momentarily restart, which could lead to a partial denial of service (DoS) condition on the affected system. The vulnerability is due to incomplete DNS packet header validation when the packet is received by the application. An attacker could exploit this vulnerability by sending a malformed DNS packet to the application. An exploit could allow the attacker to cause the DNS process to restart, which could lead to a DoS condition. This vulnerability affects Cisco Prime Network Registrar on all software versions prior to 8.3.5. Cisco Bug IDs: CSCvb55412.
A vulnerability in the implementation of the H.264 protocol in Cisco Meeting Server (CMS) 2.1.4 could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected system. The vulnerability exists because the affected application does not properly validate Fragmentation Unit (FU-A) protocol packets. An attacker could exploit this vulnerability by sending a crafted H.264 FU-A packet through the affected application. A successful exploit could allow the attacker to cause a DoS condition on the affected system due to an unexpected restart of the CMS media process on the system. Although the CMS platform continues to operate and only the single, affected CMS media process is restarted, a brief interruption of media traffic for certain users could occur. Cisco Bug IDs: CSCve10131.
A vulnerability in Google-defined remote procedure call (gRPC) handling in Cisco IOS XR Software could allow an unauthenticated, remote attacker to cause the Event Management Service daemon (emsd) to crash due to a system memory leak, resulting in a denial of service (DoS) condition. This vulnerability affects Cisco IOS XR Software with gRPC enabled. More Information: CSCvb14433. Known Affected Releases: 6.1.1.BASE 6.2.1.BASE. Known Fixed Releases: 6.2.1.22i.MGBL 6.1.22.9i.MGBL 6.1.21.12i.MGBL 6.1.2.13i.MGBL.
A vulnerability in the implementation of the Datagram TLS (DTLS) protocol in Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause high CPU utilization, resulting in a denial of service (DoS) condition. This vulnerability is due to suboptimal processing that occurs when establishing a DTLS tunnel as part of an AnyConnect SSL VPN connection. An attacker could exploit this vulnerability by sending a steady stream of crafted DTLS traffic to an affected device. A successful exploit could allow the attacker to exhaust resources on the affected VPN headend device. This could cause existing DTLS tunnels to stop passing traffic and prevent new DTLS tunnels from establishing, resulting in a DoS condition. Note: When the attack traffic stops, the device recovers gracefully.
Multiple vulnerabilities in Cisco Small Business RV160, RV260, RV340, and RV345 Series Routers could allow an attacker to do any of the following: Execute arbitrary code Elevate privileges Execute arbitrary commands Bypass authentication and authorization protections Fetch and run unsigned software Cause denial of service (DoS) For more information about these vulnerabilities, see the Details section of this advisory.
A vulnerability in the checkpoint manager implementation of Cisco Redundancy Configuration Manager (RCM) for Cisco StarOS Software could allow an unauthenticated, remote attacker to cause the checkpoint manager process to restart upon receipt of malformed TCP data. This vulnerability is due to improper input validation of an ingress TCP packet. An attacker could exploit this vulnerability by sending crafted TCP data to the affected application. A successful exploit could allow the attacker to cause a denial of service (DoS) condition due to the checkpoint manager process restarting.
A vulnerability in the RADIUS feature of Cisco Identity Services Engine (ISE) could allow an unauthenticated, remote attacker to cause the affected system to stop processing RADIUS packets. This vulnerability is due to improper handling of certain RADIUS requests. An attacker could exploit this vulnerability by attempting to authenticate to a network or a service where the access server is using Cisco ISE as the RADIUS server. A successful exploit could allow the attacker to cause Cisco ISE to stop processing RADIUS requests, causing authentication/authorization timeouts, which would then result in legitimate requests being denied access. Note: To recover the ability to process RADIUS packets, a manual restart of the affected Policy Service Node (PSN) is required. See the Details section for more information.
Multiple vulnerabilities in the Cisco IOx application hosting environment on multiple Cisco platforms could allow an attacker to inject arbitrary commands into the underlying host operating system, execute arbitrary code on the underlying host operating system, install applications without being authenticated, or conduct a cross-site scripting (XSS) attack against a user of the affected software. For more information about these vulnerabilities, see the Details section of this advisory.
A vulnerability in the packet processing functionality of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to inefficient memory management. An attacker could exploit this vulnerability by sending a high rate of IPv4 or IPv6 traffic through an affected device. This traffic would need to match a configured block action in an access control policy. An exploit could allow the attacker to cause a memory exhaustion condition on the affected device, which would result in a DoS for traffic transiting the device, as well as sluggish performance of the management interface. Once the flood is stopped, performance should return to previous states.
A vulnerability in the IPv6 packet processing engine of Cisco Small Business Smart and Managed Switches could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to insufficient validation of incoming IPv6 traffic. An attacker could exploit this vulnerability by sending a crafted IPv6 packet through an affected device. A successful exploit could allow the attacker to cause the switch management CLI to stop responding, resulting in a DoS condition. This vulnerability is specific to IPv6 traffic. IPv4 traffic is not affected.
A vulnerability in the Protocol Independent Multicast (PIM) feature for IPv6 networks (PIM6) of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to improper error handling when processing inbound PIM6 packets. An attacker could exploit this vulnerability by sending multiple crafted PIM6 packets to an affected device. A successful exploit could allow the attacker to cause the PIM6 application to leak system memory. Over time, this memory leak could cause the PIM6 application to stop processing legitimate PIM6 traffic, leading to a DoS condition on the affected device.
A vulnerability in the PDF archive parsing module in Clam AntiVirus (ClamAV) Software versions 0.101 - 0.102.2 could allow an unauthenticated, remote attacker to cause a denial of service condition on an affected device. The vulnerability is due to a stack buffer overflow read. An attacker could exploit this vulnerability by sending a crafted PDF file to an affected device. An exploit could allow the attacker to cause the ClamAV scanning process crash, resulting in a denial of service condition.
A vulnerability in the ssl_inspection component of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to crash Snort instances. The vulnerability is due to insufficient input validation in the ssl_inspection component. An attacker could exploit this vulnerability by sending a malformed TLS packet through a Cisco Adaptive Security Appliance (ASA). A successful exploit could allow the attacker to crash a Snort instance, resulting in a denial of service (DoS) condition.
A vulnerability in the SSL/TLS session handler of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to a memory leak when closing SSL/TLS connections in a specific state. An attacker could exploit this vulnerability by establishing several SSL/TLS sessions and ensuring they are closed under certain conditions. A successful exploit could allow the attacker to exhaust memory resources in the affected device, which would prevent it from processing new SSL/TLS connections, resulting in a DoS. Manual intervention is required to recover an affected device.
A vulnerability in the licensing service of Cisco Firepower Management Center (FMC) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition.The vulnerability is due to improper handling of system resource values by the affected system. An attacker could exploit this vulnerability by sending malicious requests to the targeted system. A successful exploit could allow the attacker to cause the affected system to become unresponsive, resulting in a DoS condition and preventing the management of dependent devices.
A vulnerability in the ARJ archive parsing module in Clam AntiVirus (ClamAV) Software versions 0.102.2 could allow an unauthenticated, remote attacker to cause a denial of service condition on an affected device. The vulnerability is due to a heap buffer overflow read. An attacker could exploit this vulnerability by sending a crafted ARJ file to an affected device. An exploit could allow the attacker to cause the ClamAV scanning process crash, resulting in a denial of service condition.
A vulnerability in the OSPF Version 2 (OSPFv2) implementation of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerability is due to incomplete input validation when the affected software processes certain OSPFv2 packets with Link-Local Signaling (LLS) data. An attacker could exploit this vulnerability by sending a malformed OSPFv2 packet to an affected device. A successful exploit could allow the attacker to cause an affected device to reload, resulting in a DoS condition.
A vulnerability in the SSL VPN negotiation process for Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a reload of an affected device, resulting in a denial of service (DoS) condition. The vulnerability is due to inefficient direct memory access (DMA) memory management during the negotiation phase of an SSL VPN connection. An attacker could exploit this vulnerability by sending a steady stream of crafted Datagram TLS (DTLS) traffic to an affected device. A successful exploit could allow the attacker to exhaust DMA memory on the device and cause a DoS condition.
A vulnerability in the IPv6 packet processing engine of Cisco Small Business Smart and Managed Switches could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to insufficient validation of incoming IPv6 traffic. An attacker could exploit this vulnerability by sending a crafted IPv6 packet through an affected device. A successful exploit could allow the attacker to cause an unexpected reboot of the switch, leading to a DoS condition. This vulnerability is specific to IPv6 traffic. IPv4 traffic is not affected.
A vulnerability in the Control and Provisioning of Wireless Access Points (CAPWAP) protocol handler of Cisco Wireless LAN Controller (WLC) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to insufficient validation of CAPWAP packets. An attacker could exploit this vulnerability by sending a malformed CAPWAP packet to an affected device. A successful exploit could allow the attacker to cause the affected device to restart, resulting in a DoS condition.
A vulnerability in the Internet Key Exchange Version 2 (IKEv2) implementation in Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to prevent IKEv2 from establishing new security associations. The vulnerability is due to incorrect handling of crafted IKEv2 SA-Init packets. An attacker could exploit this vulnerability by sending crafted IKEv2 SA-Init packets to the affected device. An exploit could allow the attacker to cause the affected device to reach the maximum incoming negotiation limits and prevent further IKEv2 security associations from being formed.
Multiple vulnerabilities in the Distance Vector Multicast Routing Protocol (DVMRP) feature of Cisco IOS XR Software could allow an unauthenticated, remote attacker to either immediately crash the Internet Group Management Protocol (IGMP) process or make it consume available memory and eventually crash. The memory consumption may negatively impact other processes that are running on the device. These vulnerabilities are due to the incorrect handling of IGMP packets. An attacker could exploit these vulnerabilities by sending crafted IGMP traffic to an affected device. A successful exploit could allow the attacker to immediately crash the IGMP process or cause memory exhaustion, resulting in other processes becoming unstable. These processes may include, but are not limited to, interior and exterior routing protocols. Cisco will release software updates that address these vulnerabilities.
A vulnerability in the VPN System Logging functionality for Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a memory leak that can deplete system memory over time, which can cause unexpected system behaviors or device crashes. The vulnerability is due to the system memory not being properly freed for a VPN System Logging event generated when a VPN session is created or deleted. An attacker could exploit this vulnerability by repeatedly creating or deleting a VPN tunnel connection, which could leak a small amount of system memory for each logging event. A successful exploit could allow the attacker to cause system memory depletion, which can lead to a systemwide denial of service (DoS) condition. The attacker does not have any control of whether VPN System Logging is configured or not on the device, but it is enabled by default.
Buffer overflow in Cisco 7xx routers through the telnet service.
A vulnerability in the IPsec packet processor of Cisco IOS XR Software could allow an unauthenticated remote attacker to cause a denial of service (DoS) condition for IPsec sessions to an affected device. The vulnerability is due to improper handling of packets by the IPsec packet processor. An attacker could exploit this vulnerability by sending malicious ICMP error messages to an affected device that get punted to the IPsec packet processor. A successful exploit could allow the attacker to deplete IPsec memory, resulting in all future IPsec packets to an affected device being dropped by the device. Manual intervention is required to recover from this situation.
A vulnerability in DNS over IPv6 packet processing for Cisco Adaptive Security Appliance (ASA) Software and Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause the device to unexpectedly reload, resulting in a denial of service (DoS) condition. The vulnerability is due to improper length validation of a field in an IPv6 DNS packet. An attacker could exploit this vulnerability by sending a crafted DNS query over IPv6, which traverses the affected device. An exploit could allow the attacker to cause the device to reload, resulting in a DoS condition. This vulnerability is specific to DNS over IPv6 traffic only.
A vulnerability in the Secure Sockets Layer (SSL)/Transport Layer Security (TLS) handler of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to exhaust memory resources on the affected device, leading to a denial of service (DoS) condition. The vulnerability is due to improper resource management for inbound SSL/TLS connections. An attacker could exploit this vulnerability by establishing multiple SSL/TLS connections with specific conditions to the affected device. A successful exploit could allow the attacker to exhaust the memory on the affected device, causing the device to stop accepting new SSL/TLS connections and resulting in a DoS condition for services on the device that process SSL/TLS traffic. Manual intervention is required to recover an affected device.
A vulnerability in the Constrained Application Protocol (CoAP) implementation of Cisco IoT Field Network Director could allow an unauthenticated remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to insufficient input validation of incoming CoAP traffic. An attacker could exploit this vulnerability by sending a malformed CoAP packet to an affected device. A successful exploit could allow the attacker to force the CoAP server to stop, interrupting communication to the IoT endpoints.
A vulnerability in the ICMP ingress packet processing of Cisco TelePresence Collaboration Endpoint (CE) Software could allow an unauthenticated, remote attacker to cause the TelePresence endpoint to reload unexpectedly, resulting in a denial of service (DoS) condition. The vulnerability is due to incomplete input validation for the size of a received ICMP packet. An attacker could exploit this vulnerability by sending a crafted ICMP packet to the local IP address of the targeted endpoint. A successful exploit could allow the attacker to cause a DoS of the TelePresence endpoint, during which time calls could be dropped. This vulnerability would affect either IPv4 or IPv6 ICMP traffic. This vulnerability affects the following Cisco TelePresence products when running software release CE8.1.1, CE8.2.0, CE8.2.1, CE8.2.2, CE 8.3.0, or CE8.3.1: Spark Room OS, TelePresence DX Series, TelePresence MX Series, TelePresence SX Quick Set Series, TelePresence SX Series. Cisco Bug IDs: CSCvb95396.
A vulnerability in the IPsec component of Cisco StarOS for Cisco ASR 5000 Series Routers could allow an unauthenticated, remote attacker to terminate all active IPsec VPN tunnels and prevent new tunnels from establishing, resulting in a denial of service (DoS) condition. Affected Products: ASR 5000 Series Routers, Virtualized Packet Core (VPC) Software. More Information: CSCvc21129. Known Affected Releases: 21.1.0 21.1.M0.65601 21.1.v0. Known Fixed Releases: 21.2.A0.65754 21.1.b0.66164 21.1.V0.66014 21.1.R0.65759 21.1.M0.65749 21.1.0.66030 21.1.0.
Cisco Content Security Management Appliance (SMA) 7.8.0-000 does not properly validate credentials, which allows remote attackers to cause a denial of service (rapid log-file rollover and application fault) via crafted HTTP requests, aka Bug ID CSCuw09620.
A vulnerability in the local malware analysis process of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on the affected device. This vulnerability is due to insufficient error handling in the local malware analysis process of an affected device. An attacker could exploit this vulnerability by sending a crafted file through the device. A successful exploit could allow the attacker to cause the local malware analysis process to crash, which could result in a DoS condition. Notes: Manual intervention may be required to recover from this situation. Malware cloud lookup and dynamic analysis will not be impacted.
A vulnerability in the data plane microcode of Lightspeed-Plus line cards for Cisco ASR 9000 Series Aggregation Services Routers could allow an unauthenticated, remote attacker to cause the line card to reset. This vulnerability is due to the incorrect handling of malformed packets that are received on the Lightspeed-Plus line cards. An attacker could exploit this vulnerability by sending a crafted IPv4 or IPv6 packet through an affected device. A successful exploit could allow the attacker to cause the Lightspeed-Plus line card to reset, resulting in a denial of service (DoS) condition for any traffic that traverses that line card.
A vulnerability in the TCP/IP stack of Cisco Email Security Appliance (ESA), Cisco Web Security Appliance (WSA), and Cisco Secure Email and Web Manager, formerly Security Management Appliance, could allow an unauthenticated, remote attacker to crash the Simple Network Management Protocol (SNMP) service, resulting in a denial of service (DoS) condition. This vulnerability is due to an open port listener on TCP port 199. An attacker could exploit this vulnerability by connecting to TCP port 199. A successful exploit could allow the attacker to crash the SNMP service, resulting in a DoS condition.
Unspecified vulnerability in an unspecified Microsoft API, as used by Cisco Unity and possibly other products, allows remote attackers to cause a denial of service by sending crafted packets to dynamic UDP ports, related to a "processing error."
The firewall subsystem in Cisco Identity Services Engine has an incorrect rule for open ports, which allows remote attackers to cause a denial of service (CPU consumption or process crash) via a flood of malformed IP packets, aka Bug ID CSCug94572.
dnsserver in Cisco Application Control Engine Global Site Selector (GSS) before 3.0(1) allows remote attackers to cause a denial of service (daemon crash) via a series of crafted DNS requests, aka Bug ID CSCsj70093.
Buffer overflow in the web-application interface on Cisco 9900 IP phones allows remote attackers to cause a denial of service (webapp interface outage) via long values in unspecified fields, aka Bug ID CSCuh10343.