Crash in USB HID dissector in Wireshark 3.4.0 to 3.4.2 allows denial of service via packet injection or crafted capture file
In Wireshark 2.6.0 to 2.6.4 and 2.4.0 to 2.4.10, the MMSE dissector could go into an infinite loop. This was addressed in epan/dissectors/packet-mmse.c by preventing length overflows.
In Wireshark 2.6.0 to 2.6.4 and 2.4.0 to 2.4.10, the IxVeriWave file parser could crash. This was addressed in wiretap/vwr.c by adjusting a buffer boundary.
In Wireshark 2.6.0 to 2.6.4, the ZigBee ZCL dissector could crash. This was addressed in epan/dissectors/packet-zbee-zcl-lighting.c by preventing a divide-by-zero error.
The APN decode functionality in (1) epan/dissectors/packet-gtp.c and (2) epan/dissectors/packet-gsm_a_gm.c in the GTP and GSM Management dissectors in Wireshark 1.10.x before 1.10.9 does not completely initialize a certain buffer, which allows remote attackers to cause a denial of service (application crash) via a crafted packet.
Stack consumption vulnerability in the dissect_ber_unknown function in epan/dissectors/packet-ber.c in the BER dissector in Wireshark 1.4.x before 1.4.1 and 1.2.x before 1.2.12 allows remote attackers to cause a denial of service (NULL pointer dereference and crash) via a long string in an unknown ASN.1/BER encoded packet, as demonstrated using SNMP.
packet-gsm_a_rr.c in the GSM A RR dissector in Wireshark 1.2.2 through 1.2.9 allows remote attackers to cause a denial of service (crash) via unknown vectors that trigger a NULL pointer dereference.
The dissect_ber_constrained_bitstring function in epan/dissectors/packet-ber.c in the ASN.1 BER dissector in Wireshark 1.10.x before 1.10.9 does not properly validate padding values, which allows remote attackers to cause a denial of service (buffer underflow and application crash) via a crafted packet.
In Wireshark 2.6.0 to 2.6.4 and 2.4.0 to 2.4.10, the LBMPDM dissector could crash. In addition, a remote attacker could write arbitrary data to any memory locations before the packet-scoped memory. This was addressed in epan/dissectors/packet-lbmpdm.c by disallowing certain negative values.
The read_new_line function in wiretap/catapult_dct2000.c in the Catapult DCT2000 dissector in Wireshark 1.10.x before 1.10.9 does not properly strip '\n' and '\r' characters, which allows remote attackers to cause a denial of service (off-by-one buffer underflow and application crash) via a crafted packet.
The rlc_decode_li function in epan/dissectors/packet-rlc.c in the RLC dissector in Wireshark 1.10.x before 1.10.9 initializes a certain structure member only after this member is used, which allows remote attackers to cause a denial of service (application crash) via a crafted packet.
In Wireshark 2.6.0 to 2.6.3 and 2.4.0 to 2.4.9, the MS-WSP protocol dissector could crash. This was addressed in epan/dissectors/packet-mswsp.c by properly handling NULL return values.
Unspecified vulnerability in the TLS dissector in Wireshark 1.2.0 and 1.2.1, when running on Windows, allows remote attackers to cause a denial of service (application crash) via unknown vectors related to TLS 1.2 conversations.
Off-by-one error in the dissect_negprot_response function in packet-smb.c in the SMB dissector in Wireshark 1.2.0 through 1.2.2 allows remote attackers to cause a denial of service (application crash) via a file that records a malformed packet trace. NOTE: some of these details are obtained from third party information.
The logcat_dump_text function in wiretap/logcat.c in the Android Logcat file parser in Wireshark 1.12.x before 1.12.5 does not properly handle a lack of \0 termination, which allows remote attackers to cause a denial of service (out-of-bounds read and application crash) via a crafted message in a packet, a different vulnerability than CVE-2015-3815.
The detect_version function in wiretap/logcat.c in the Android Logcat file parser in Wireshark 1.12.x before 1.12.5 does not check the length of the payload, which allows remote attackers to cause a denial of service (out-of-bounds read and application crash) via a packet with a crafted payload, as demonstrated by a length of zero, a different vulnerability than CVE-2015-3906.
Buffer overflow in the IPMI dissector in Wireshark 1.2.0 allows remote attackers to cause a denial of service (crash) via unspecified vectors related to an array index error. NOTE: some of these details are obtained from third party information.
Unspecified vulnerability in the AFS dissector in Wireshark 0.9.2 through 1.2.0 allows remote attackers to cause a denial of service (crash) via unknown vectors.
Unspecified vulnerability in the sFlow dissector in Wireshark 1.2.0 allows remote attackers to cause a denial of service (CPU and memory consumption) via unspecified vectors.
Multiple unspecified vulnerabilities in Wireshark 1.2.0 allow remote attackers to cause a denial of service (application crash) via a file that records a malformed packet trace and is processed by the (1) Bluetooth L2CAP, (2) RADIUS, or (3) MIOP dissector. NOTE: it was later reported that the RADIUS issue also affects 0.10.13 through 1.0.9.
In Wireshark 2.6.0 to 2.6.3, the CoAP dissector could crash. This was addressed in epan/dissectors/packet-coap.c by ensuring that the piv length is correctly computed.
In Wireshark 2.6.0 to 2.6.2, 2.4.0 to 2.4.8, and 2.2.0 to 2.2.16, the Radiotap dissector could crash. This was addressed in epan/dissectors/packet-ieee80211-radiotap-iter.c by validating iterator operations.
In Wireshark 2.6.0 to 2.6.2, 2.4.0 to 2.4.8, and 2.2.0 to 2.2.16, the Bluetooth Attribute Protocol dissector could crash. This was addressed in epan/dissectors/packet-btatt.c by verifying that a dissector for a specific UUID exists.
In Wireshark 2.6.0 to 2.6.1 and 2.4.0 to 2.4.7, the CoAP protocol dissector could crash. This was addressed in epan/dissectors/packet-coap.c by properly checking for a NULL condition.
In Wireshark 2.6.0 to 2.6.1, 2.4.0 to 2.4.7, and 2.2.0 to 2.2.15, dissectors that support zlib decompression could crash. This was addressed in epan/tvbuff_zlib.c by rejecting negative lengths to avoid a buffer over-read.
In Wireshark 2.6.0 to 2.6.1, 2.4.0 to 2.4.7, and 2.2.0 to 2.2.15, the ISMP dissector could crash. This was addressed in epan/dissectors/packet-ismp.c by validating the IPX address length to avoid a buffer over-read.
In Wireshark 2.6.0 to 2.6.1, 2.4.0 to 2.4.7, and 2.2.0 to 2.2.15, the ASN.1 BER dissector could crash. This was addressed in epan/dissectors/packet-ber.c by ensuring that length values do not exceed the maximum signed integer.
Buffer overflow in wiretap/netscreen.c in Wireshark 0.99.7 through 1.0.5 allows user-assisted remote attackers to cause a denial of service (application crash) via a malformed NetScreen snoop file.
Buffer underflow in the ssl_decrypt_record function in epan/dissectors/packet-ssl-utils.c in Wireshark 1.10.x before 1.10.12 and 1.12.x before 1.12.3 allows remote attackers to cause a denial of service (application crash) via a crafted packet that is improperly handled during decryption of an SSL session.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-multipart.c has a memory leak.
Multiple use-after-free vulnerabilities in epan/dissectors/packet-dec-dnart.c in the DEC DNA Routing Protocol dissector in Wireshark 1.10.x before 1.10.12 and 1.12.x before 1.12.3 allow remote attackers to cause a denial of service (application crash) via a crafted packet, related to the use of packet-scope memory instead of pinfo-scope memory.
The dissect_wccp2r1_address_table_info function in epan/dissectors/packet-wccp.c in the WCCP dissector in Wireshark 1.10.x before 1.10.12 and 1.12.x before 1.12.3 does not initialize certain data structures, which allows remote attackers to cause a denial of service (application crash) via a crafted packet.
Unspecified vulnerability in the PCNFSD dissector in Wireshark 0.8.20 through 1.0.7 allows remote attackers to cause a denial of service (crash) via crafted PCNFSD packets.
In Wireshark 2.6.0, 2.4.0 to 2.4.6, and 2.2.0 to 2.2.14, the Q.931 dissector could crash. This was addressed in epan/dissectors/packet-q931.c by avoiding a use-after-free after a malformed packet prevented certain cleanup.
In Wireshark 2.6.0, 2.4.0 to 2.4.6, and 2.2.0 to 2.2.14, the LDSS dissector could crash. This was addressed in epan/dissectors/packet-ldss.c by avoiding a buffer over-read upon encountering a missing '\0' character.
In Wireshark 2.6.0, 2.4.0 to 2.4.6, and 2.2.0 to 2.2.14, the GSM A DTAP dissector could crash. This was addressed in epan/dissectors/packet-gsm_a_dtap.c by fixing an off-by-one error that caused a buffer overflow.
In Wireshark 2.6.0, the RTCP dissector could crash. This was addressed in epan/dissectors/packet-rtcp.c by avoiding a buffer overflow for packet status chunks.
In Wireshark 2.6.0, the IEEE 802.11 protocol dissector could crash. This was addressed in epan/crypt/dot11decrypt.c by avoiding a buffer overflow during FTE processing in Dot11DecryptTDLSDeriveKey.
In Wireshark 2.6.0, 2.4.0 to 2.4.6, and 2.2.0 to 2.2.14, the DNS dissector could crash. This was addressed in epan/dissectors/packet-dns.c by avoiding a NULL pointer dereference for an empty name in an SRV record.
In Wireshark 2.6.0, 2.4.0 to 2.4.6, and 2.2.0 to 2.2.14, the RRC dissector and other dissectors could crash. This was addressed in epan/proto.c by avoiding a NULL pointer dereference.
In Wireshark 3.2.0 to 3.2.1, 3.0.0 to 3.0.8, and 2.6.0 to 2.6.14, the EAP dissector could crash. This was addressed in epan/dissectors/packet-eap.c by using more careful sscanf parsing.
In Wireshark 3.2.0 to 3.2.1, 3.0.0 to 3.0.8, and 2.6.0 to 2.6.14, the LTE RRC dissector could leak memory. This was addressed in epan/dissectors/packet-lte-rrc.c by adjusting certain append operations.
In Wireshark 2.2.0 to 2.2.6 and 2.0.0 to 2.0.12, the Bluetooth L2CAP dissector could divide by zero. This was addressed in epan/dissectors/packet-btl2cap.c by validating an interval value.
In Wireshark 3.2.x before 3.2.1, the WASSP dissector could crash. This was addressed in epan/dissectors/packet-wassp.c by using >= and <= to resolve off-by-one errors.
In Wireshark 2.2.7, PROFINET IO data with a high recursion depth allows remote attackers to cause a denial of service (stack exhaustion) in the dissect_IODWriteReq function in plugins/profinet/packet-dcerpc-pn-io.c.
In Wireshark 2.2.0 to 2.2.6, the DOF dissector could read past the end of a buffer. This was addressed in epan/dissectors/packet-dof.c by validating a size value.
Wireshark 1.0.4 and earlier allows remote attackers to cause a denial of service via a long SMTP request, which triggers an infinite loop.
In Wireshark 2.2.0 to 2.2.3 and 2.0.0 to 2.0.9, the DHCPv6 dissector could go into a large loop, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-dhcpv6.c by changing a data type to avoid an integer overflow.
Crash in the PVFS protocol dissector in Wireshark 3.6.0 to 3.6.1 and 3.4.0 to 3.4.11 allows denial of service via packet injection or crafted capture file
Unspecified vulnerability in the HTTP dissector for Wireshark (formerly Ethereal) 0.10.14 to 0.99.6 allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via crafted chunked messages.