The SPICE Firefox plug-in (spice-xpi) 2.4, 2.3, 2.2, and possibly other versions allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via vectors related to (1) plugin/nsScriptablePeer.cpp and (2) plugin/plugin.cpp, which trigger multiple uses of an uninitialized pointer.
numbers.c in libxslt before 1.1.29, as used in Google Chrome before 51.0.2704.63, mishandles namespace nodes, which allows remote attackers to cause a denial of service (out-of-bounds heap memory access) or possibly have unspecified other impact via a crafted document.
In all Qualcomm products with Android releases from CAF using the Linux kernel, during the wlan calibration data store and retrieve operation, there are some potential race conditions which lead to a memory leak and a buffer overflow during the context switch.
Heap-based buffer overflow in the php_parserr function in ext/standard/dns.c in PHP 5.6.0beta4 and earlier allows remote servers to cause a denial of service (crash) and possibly execute arbitrary code via a crafted DNS TXT record, related to the dns_get_record function.
Stack-based buffer overflow in the encode_key function in /system/bin/keystore in the KeyStore service in Android 4.3 allows attackers to execute arbitrary code, and consequently obtain sensitive key information or bypass intended restrictions on cryptographic operations, via a long key name.
Heap-based buffer overflow in the Ins_IUP function in truetype/ttinterp.c in FreeType before 2.4.0, when TrueType bytecode support is enabled, allows remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a crafted font file.
Git is an open-source distributed revision control system. In affected versions of Git a specially crafted repository that contains symbolic links as well as files using a clean/smudge filter such as Git LFS, may cause just-checked out script to be executed while cloning onto a case-insensitive file system such as NTFS, HFS+ or APFS (i.e. the default file systems on Windows and macOS). Note that clean/smudge filters have to be configured for that. Git for Windows configures Git LFS by default, and is therefore vulnerable. The problem has been patched in the versions published on Tuesday, March 9th, 2021. As a workaound, if symbolic link support is disabled in Git (e.g. via `git config --global core.symlinks false`), the described attack won't work. Likewise, if no clean/smudge filters such as Git LFS are configured globally (i.e. _before_ cloning), the attack is foiled. As always, it is best to avoid cloning repositories from untrusted sources. The earliest impacted version is 2.14.2. The fix versions are: 2.30.1, 2.29.3, 2.28.1, 2.27.1, 2.26.3, 2.25.5, 2.24.4, 2.23.4, 2.22.5, 2.21.4, 2.20.5, 2.19.6, 2.18.5, 2.17.62.17.6.
In Pivotal Spring-LDAP versions 1.3.0 - 2.3.1, when connected to some LDAP servers, when no additional attributes are bound, and when using LDAP BindAuthenticator with org.springframework.ldap.core.support.DefaultTlsDirContextAuthenticationStrategy as the authentication strategy, and setting userSearch, authentication is allowed with an arbitrary password when the username is correct. This occurs because some LDAP vendors require an explicit operation for the LDAP bind to take effect.
Race in image burner in Google Chrome on ChromeOS prior to 87.0.4280.66 allowed a remote attacker who had compromised the browser process to perform OS-level privilege escalation via a malicious file.
A double-Free vulnerability exists in the XCF image rendering functionality of SDL2_image-2.0.2. A specially crafted XCF image can cause a Double-Free situation to occur. An attacker can display a specially crafted image to trigger this vulnerability.
CVS 1.12.x, when configured to use SSH for remote repositories, might allow remote attackers to execute arbitrary code via a repository URL with a crafted hostname, as demonstrated by "-oProxyCommand=id;localhost:/bar."
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Libraries). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144. Difficult to exploit vulnerability allows unauthenticated attacker with network access via Kerberos to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: Applies to the Java SE Kerberos client. CVSS 3.0 Base Score 7.5 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H).
Vulnerability in the Java SE component of Oracle Java SE (subcomponent: JavaFX). Supported versions that are affected are Java SE: 7u141 and 8u131. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 8.3 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:H/A:H).
An exploitable out of bounds write exists in the handling of compressed TIFF images in ImageMagicks's convert utility. A crafted TIFF document can lead to an out of bounds write which in particular circumstances could be leveraged into remote code execution. The vulnerability can be triggered through any user controlled TIFF that is handled by this functionality.
An exploitable buffer overflow vulnerability exists in the LoadEncoding functionality of the R programming language version 3.3.0. A specially crafted R script can cause a buffer overflow resulting in a memory corruption. An attacker can send a malicious R script to trigger this vulnerability.
The MediaTek Wi-Fi driver in Android before 2016-05-01 on Android One devices allows attackers to gain privileges via a crafted application, aka internal bug 27275187.
Vulnerability in the Java SE component of Oracle Java SE (subcomponent: Security). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in takeover of Java SE. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 7.5 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H).
Apache Tomcat 7.x through 7.0.70 and 8.x through 8.5.4, when the CGI Servlet is enabled, follows RFC 3875 section 4.1.18 and therefore does not protect applications from the presence of untrusted client data in the HTTP_PROXY environment variable, which might allow remote attackers to redirect an application's outbound HTTP traffic to an arbitrary proxy server via a crafted Proxy header in an HTTP request, aka an "httpoxy" issue. NOTE: the vendor states "A mitigation is planned for future releases of Tomcat, tracked as CVE-2016-5388"; in other words, this is not a CVE ID for a vulnerability.
SQL injection vulnerability in the Courier Authentication Library (aka courier-authlib) before 0.60.6 on SUSE openSUSE 10.3 and 11.0, and other platforms, when MySQL and a non-Latin character set are used, allows remote attackers to execute arbitrary SQL commands via the username and unspecified other vectors.
PHP through 7.0.8 does not attempt to address RFC 3875 section 4.1.18 namespace conflicts and therefore does not protect applications from the presence of untrusted client data in the HTTP_PROXY environment variable, which might allow remote attackers to redirect an application's outbound HTTP traffic to an arbitrary proxy server via a crafted Proxy header in an HTTP request, as demonstrated by (1) an application that makes a getenv('HTTP_PROXY') call or (2) a CGI configuration of PHP, aka an "httpoxy" issue.
Use-after-free vulnerability in WebKit/Source/core/editing/VisibleUnits.cpp in Blink, as used in Google Chrome before 52.0.2743.82, allows remote attackers to cause a denial of service or possibly have unspecified other impact via crafted JavaScript code involving an @import at-rule in a Cascading Style Sheets (CSS) token sequence in conjunction with a rel=import attribute of a LINK element.
Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Libraries). Supported versions that are affected are Java SE: 7u261, 8u251, 11.0.7 and 14.0.1; Java SE Embedded: 8u251. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 8.3 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:H/A:H).
The Autofill implementation in Google Chrome before 51.0.2704.63 mishandles the interaction between field updates and JavaScript code that triggers a frame deletion, which allows remote attackers to cause a denial of service (use-after-free) or possibly have unspecified other impact via a crafted web site, a different vulnerability than CVE-2016-1701.
A flaw was found in WildFly Elytron version 1.11.3.Final and before. When using WildFly Elytron FORM authentication with a session ID in the URL, an attacker could perform a session fixation attack. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability.
The com.ibm.rmi.io.SunSerializableFactory class in IBM SDK, Java Technology Edition 6 before SR16 FP25 (6.0.16.25), 6 R1 before SR8 FP25 (6.1.8.25), 7 before SR9 FP40 (7.0.9.40), 7 R1 before SR3 FP40 (7.1.3.40), and 8 before SR3 (8.0.3.0) does not properly deserialize classes in an AccessController doPrivileged block, which allows remote attackers to bypass a sandbox protection mechanism and execute arbitrary code as demonstrated by the readValue method of the com.ibm.rmi.io.ValueHandlerPool.ValueHandlerSingleton class, which implements the javax.rmi.CORBA.ValueHandler interface. NOTE: this vulnerability exists because of an incomplete fix for CVE-2013-5456.
The Plugins Manager in Jenkins before 1.640 and LTS before 1.625.2 does not verify checksums for plugin files referenced in update site data, which makes it easier for man-in-the-middle attackers to execute arbitrary code via a crafted plugin.
When PgBouncer is configured to use "cert" authentication, a man-in-the-middle attacker can inject arbitrary SQL queries when a connection is first established, despite the use of TLS certificate verification and encryption. This flaw affects PgBouncer versions prior to 1.16.1.
Race in V8 in Google Chrome prior to 95.0.4638.54 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Buffer overflow in the BMP loader in imlib2 before 1.1.2 allows remote attackers to execute arbitrary code via a specially-crafted BMP image, a different vulnerability than CVE-2004-0817.
A flaw was found in libdnf's signature verification functionality in versions before 0.60.1. This flaw allows an attacker to achieve code execution if they can alter the header information of an RPM package and then trick a user or system into installing it. The highest risk of this vulnerability is to confidentiality, integrity, as well as system availability.
In WebKitGTK through 2.36.0 (and WPE WebKit), there is a heap-based buffer overflow in WebCore::TextureMapperLayer::setContentsLayer in WebCore/platform/graphics/texmap/TextureMapperLayer.cpp.
Vulnerability in the Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Java SE: 8u291, 11.0.11, 16.0.1; Oracle GraalVM Enterprise Edition: 20.3.2 and 21.1.0. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Oracle GraalVM Enterprise Edition. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in takeover of Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 7.5 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H).
A race condition was addressed with improved state handling. This issue is fixed in tvOS 15.2, macOS Monterey 12.1, Safari 15.2, iOS 15.2 and iPadOS 15.2, watchOS 8.3. Processing maliciously crafted web content may lead to arbitrary code execution.
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Security). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, JRockit, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 8.3 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:H/A:H).
Slurm 19.05.x before 19.05.7 and 20.02.x before 20.02.3, in the rare case where Message Aggregation is enabled, allows Authentication Bypass via an Alternate Path or Channel. A race condition allows a user to launch a process as an arbitrary user.
When the server is configured to use trust authentication with a clientcert requirement or to use cert authentication, a man-in-the-middle attacker can inject arbitrary SQL queries when a connection is first established, despite the use of SSL certificate verification and encryption.
Unspecified vulnerability in the MySQL Client component in Oracle MySQL 5.5.36 and earlier and 5.6.16 and earlier allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors.
Use-after-free vulnerability in the mozilla::dom::Element class in Mozilla Firefox before 47.0 and Firefox ESR 45.x before 45.2, when contenteditable mode is enabled, allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) by triggering deletion of DOM elements that were created in the editor.
numbers.c in libxslt before 1.1.29, as used in Google Chrome before 51.0.2704.63, mishandles the i format token for xsl:number data, which allows remote attackers to cause a denial of service (integer overflow or resource consumption) or possibly have unspecified other impact via a crafted document.
A race condition in Oilpan in Google Chrome prior to 68.0.3440.75 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
A flaw was found in RPM's signature check functionality when reading a package file. This flaw allows an attacker who can convince a victim to install a seemingly verifiable package, whose signature header was modified, to cause RPM database corruption and execute code. The highest threat from this vulnerability is to data integrity, confidentiality, and system availability.
An exploitable code execution vulnerability exists in the XCF image rendering functionality of Simple DirectMedia Layer SDL2_image-2.0.2. A specially crafted XCF image can cause an out-of-bounds write on the heap, resulting in code execution. An attacker can display a specially crafted image to trigger this vulnerability.
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Hotspot). Supported versions that are affected are Java SE: 6u181, 7u171, 8u162 and 10; Java SE Embedded: 8u161. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 8.3 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:H/A:H).
Unspecified vulnerability in Oracle Java SE 6u65 and 7u45 allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Deployment, a different vulnerability than CVE-2013-5889, CVE-2013-5902, CVE-2014-0410, CVE-2014-0415, and CVE-2014-0424.
A flaw was found in keycloak. The new account console in keycloak can allow malicious code to be executed using the referrer URL. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability.
Unspecified vulnerability in Oracle Java SE 5.0u55, 6u65, and 7u45 allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Install, a different vulnerability than CVE-2013-5905.
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: JNDI). Supported versions that are affected are Java SE: 6u171, 7u161, 8u152 and 9.0.1; Java SE Embedded: 8u151; JRockit: R28.3.16. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, JRockit, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded, JRockit. Note: This vulnerability applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 8.3 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:H/A:H).
mod_rewrite.c in the mod_rewrite module in the Apache HTTP Server 2.2.x before 2.2.25 writes data to a log file without sanitizing non-printable characters, which might allow remote attackers to execute arbitrary commands via an HTTP request containing an escape sequence for a terminal emulator.
extensions/renderer/runtime_custom_bindings.cc in Google Chrome before 51.0.2704.79 does not consider side effects during creation of an array of extension views, which allows remote attackers to cause a denial of service (use-after-free) or possibly have unspecified other impact via vectors related to extensions.
Buffer overflow in Sylpheed before 1.0.3 and other versions before 1.9.5 allows remote attackers to execute arbitrary code via an e-mail message with certain headers containing non-ASCII characters that are not properly handled when the user replies to the message.