Buffer overflow in the list_files function in list.c in Info-Zip UnZip 6.0 allows remote attackers to cause a denial of service (crash) via vectors related to the compression method.
Info-ZIP UnZip 6.0 mishandles the overlapping of files inside a ZIP container, leading to denial of service (resource consumption), aka a "better zip bomb" issue.
Info-ZIP UnZip 6.0 has a buffer overflow in list.c, when a ZIP archive has a crafted relationship between the compressed-size value and the uncompressed-size value, because a buffer size is 10 and is supposed to be 12.
Info-ZIP UnZip 6.0 allows remote attackers to cause a denial of service (heap-based buffer over-read and application crash) or possibly execute arbitrary code via a crafted password-protected ZIP archive, possibly related to an Extra-Field size value.
unzip 6.0 allows remote attackers to cause a denial of service (out-of-bounds read or write and crash) via an extra field with an uncompressed size smaller than the compressed field size in a zip archive that advertises STORED method compression.
The NEEDBITS macro in the inflate_dynamic function in inflate.c for unzip can be invoked using invalid buffers, which allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via unknown vectors that trigger a free of uninitialized or previously-freed data.
The Windows installer for NTP before 4.2.8p10 and 4.3.x before 4.3.94 allows local users to have unspecified impact via vectors related to an argument with multiple null bytes.
Heap-based buffer overflow in the vrend_create_vertex_elements_state function in vrend_renderer.c in virglrenderer before 0.6.0 allows local guest OS users to cause a denial of service (out-of-bounds array access and crash) via the num_elements parameter.
The parse_instruction function in gallium/auxiliary/tgsi/tgsi_text.c in virglrenderer before 0.6.0 allows local guest OS users to cause a denial of service (out-of-bounds array access and process crash) via a crafted texture instruction.
A buffer overflow vulnerability in Juniper Networks NorthStar Controller Application prior to version 2.1.0 Service Pack 1 may allow an authenticated malicious user to cause a buffer overflow leading to a denial of service.
Huawei eNSP software with software of versions earlier than V100R002C00B510 has a buffer overflow vulnerability. Due to the improper validation of specific command line parameter, a local attacker could exploit this vulnerability to cause the software process abnormal.
PEM module of Huawei DP300 V500R002C00; IPS Module V500R001C00; V500R001C30; NGFW Module V500R001C00; V500R002C00; NIP6300 V500R001C00; V500R001C30; NIP6600 V500R001C00; V500R001C30; RP200 V500R002C00; V600R006C00; S12700 V200R007C00; V200R007C01; V200R008C00; V200R009C00; V200R010C00; S1700 V200R006C10; V200R009C00; V200R010C00; S2700 V200R006C10; V200R007C00; V200R008C00; V200R009C00; V200R010C00; S5700 V200R006C00; V200R007C00; V200R008C00; V200R009C00; V200R010C00; S6700 V200R008C00; V200R009C00; V200R010C00; S7700 V200R007C00; V200R008C00; V200R009C00; V200R010C00; S9700 V200R007C00; V200R007C01; V200R008C00; V200R009C00; V200R010C00; Secospace USG6300 V500R001C00; V500R001C30; Secospace USG6500 V500R001C00; V500R001C30; Secospace USG6600 V500R001C00; V500R001C30S; TE30 V100R001C02; V100R001C10; V500R002C00; V600R006C00; TE40 V500R002C00; V600R006C00; TE50 V500R002C00; V600R006C00; TE60 V100R001C01; V100R001C10; V500R002C00; V600R006C00; TP3106 V100R002C00; TP3206 V100R002C00; V100R002C10; USG9500 V500R001C00; V500R001C30; ViewPoint 9030 V100R011C02; V100R011C03 has a heap overflow vulnerability due to insufficient verification. An authenticated local attacker can make processing crash by a malicious certificate. The attacker can exploit this vulnerability to cause a denial of service.
Huawei AR120-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR1200 V200R006C10, V200R006C13, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR1200-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR150 V200R006C10, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR150-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR160 V200R006C10, V200R006C12, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR200 V200R006C10, V200R007C00, V200R007C01, V200R008C20, V200R008C30, AR200-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR2200 V200R006C10, V200R006C13, V200R006C16, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR2200-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR3200 V200R006C10, V200R006C11, V200R007C00, V200R007C01, V200R007C02, V200R008C00, V200R008C10, V200R008C20, V200R008C30, AR3600 V200R006C10, V200R007C00, V200R007C01, V200R008C20, AR510 V200R006C10, V200R006C12, V200R006C13, V200R006C15, V200R006C16, V200R006C17, V200R007C00, V200R008C20, V200R008C30, DP300 V500R002C00, MAX PRESENCE V100R001C00, NetEngine16EX V200R006C10, V200R007C00, V200R008C20, V200R008C30, RP200 V500R002C00, V600R006C00, SRG1300 V200R006C10, V200R007C00, V200R007C02, V200R008C20, V200R008C30, SRG2300 V200R006C10, V200R007C00, V200R007C02, V200R008C20, V200R008C30, SRG3300 V200R006C10, V200R007C00, V200R008C20, V200R008C30, TE30 V100R001C02, V100R001C10, V500R002C00, V600R006C00, TE40 V500R002C00, V600R006C00, TE50 V500R002C00, V600R006C00, TE60 V100R001C01, V100R001C10, V500R002C00, V600R006C00, TP3106 V100R002C00, TP3206 V100R002C00, V100R002C10 have a buffer overflow vulnerability. An authenticated, local attacker may craft a specific XML file to the affected products. Due to insufficient input validation, successful exploit will cause some service abnormal.
The SUSE coreutils-i18n.patch for GNU coreutils allows context-dependent attackers to cause a denial of service (segmentation fault and crash) via a long string to the uniq command, which triggers a stack-based buffer overflow in the alloca function.
The eSpace Meeting ActiveX control (eSpaceStatusCtrl.dll) in Huawei eSpace Desktop before V200R001C03 allows local users to cause a denial of service (memory overflow) via unspecified vectors.
In PCRE 8.41, after compiling, a pcretest load test PoC produces a crash overflow in the function match() in pcre_exec.c because of a self-recursive call. NOTE: third parties dispute the relevance of this report, noting that there are options that can be used to limit the amount of stack that is used
NCP Network Communication Secure Client 8.11 Build 146, and possibly other versions, allows local users to cause a denial of service (CPU consumption) via a large number of arguments to ncprwsnt.exe, possibly due to a buffer overflow.
Buffer overflow in the SQLDriverConnect function in unixODBC 2.0.10, 2.3.1, and earlier allows local users to cause a denial of service (crash) via a long string in the FILEDSN option. NOTE: this issue might not be a vulnerability, since the ability to set this option typically implies that the attacker already has legitimate access to cause a DoS or execute code, and therefore the issue would not cross privilege boundaries. There may be limited attack scenarios if isql command-line options are exposed to an attacker, although it seems likely that other, more serious issues would also be exposed, and this issue might not cross privilege boundaries in that context.
BazisVirtualCDBus.sys in WinCDEmu 3.6 allows local users to cause a denial of service (system crash) via the unmount command to batchmnt.exe.
The _expand_arg function in the pam_env module (modules/pam_env/pam_env.c) in Linux-PAM (aka pam) before 1.1.5 does not properly handle when environment variable expansion can overflow, which allows local users to cause a denial of service (CPU consumption).
Multiple buffer overflows in the NMEA parser (nmea-gen.c) in gypsy 0.8 allow local users to cause a denial of service (crash) via unspecified vectors related to the sprintf function.
Buffer overflow in the msTmpFile function in maputil.c in mapserv in MapServer before 4.10.6 and 5.x before 5.6.4 allows local users to cause a denial of service via vectors involving names of temporary files.
The MSGFunctionDemarshall function in winscard_svc.c in the PC/SC Smart Card daemon (aka PCSCD) in MUSCLE PCSC-Lite before 1.5.4 might allow local users to cause a denial of service (daemon crash) via crafted SCARD_SET_ATTRIB message data, which is improperly demarshalled and triggers a buffer over-read, a related issue to CVE-2010-0407.
A memory corruption vulnerability exists in NextCloud Desktop Client v2.6.4 where missing ASLR and DEP protections in for windows allowed to corrupt memory.
ZTE's SDON controller is impacted by the resource management error vulnerability. When RPC is frequently called by other applications in the case of mass traffic data in the system, it will result in no response for a long time and memory overflow risk. This affects: ZENIC ONE R22b versions V16.19.10P02SP002 and V16.19.10P02SP005.
An issue was discovered in Xen through 4.12.x allowing 32-bit Arm guest OS users to cause a denial of service (out-of-bounds access) because certain bit iteration is mishandled. In a number of places bitmaps are being used by the hypervisor to track certain state. Iteration over all bits involves functions which may misbehave in certain corner cases: On 32-bit Arm accesses to bitmaps with bit a count which is a multiple of 32, an out of bounds access may occur. A malicious guest may cause a hypervisor crash or hang, resulting in a Denial of Service (DoS). All versions of Xen are vulnerable. 32-bit Arm systems are vulnerable. 64-bit Arm systems are not vulnerable.
An issue was discovered in OpenSC through 0.19.0 and 0.20.x through 0.20.0-rc3. libopensc/card-cac1.c mishandles buffer limits for CAC certificates.
When Antiy Antivirus Engine before 5.0.0.05171547 scans a special ZIP archive, it crashes with a stack-based buffer overflow because a fixed path length is used.
Insufficient bounds checking in Intel(R) Graphics Drivers before version 10.18.14.5067 (aka 15.36.x.5067) and 10.18.10.5069 (aka 15.33.x.5069) may allow an authenticated user to potentially enable a denial of service via local access.
Buffer overflow in Intel PROSet/Wireless Software and Drivers in versions before 19.20.3 allows a local user to crash iframewrk.exe causing a potential denial of service.
Buffer overflow in Intel system Configuration utilities selview.exe and syscfg.exe before version 14 build 11 allows a local user to crash these services potentially resulting in a denial of service.
Improper memory handling in Intel QuickAssist Technology for Linux (all versions) may allow an authenticated user to potentially enable a denial of service via local access.
IBM GSKit (IBM DB2 for Linux, UNIX and Windows 9.7, 10.1, 10.5, and 11.1) contains several environment variables that a local attacker could overflow and cause a denial of service. IBM X-Force ID: 139072.
The get_cmd function in hw/scsi/esp.c in the 53C9X Fast SCSI Controller (FSC) support in QEMU does not properly check DMA length, which allows local guest OS administrators to cause a denial of service (out-of-bounds write and QEMU process crash) via unspecified vectors, involving an SCSI command.
The read_boot function in boot.c in dosfstools before 4.0 allows attackers to cause a denial of service (crash) via a crafted filesystem, which triggers a heap-based buffer overflow in the (1) read_fat function or an out-of-bounds heap read in (2) get_fat function.
SAP SLD Registration Program (aka SLDREG) allows local users to cause a denial of service (memory corruption and process termination) via a crafted HOST parameter, aka SAP Security Note 2125623.
Multiple pointer dereferences in User Mode Driver in Intel(R) Graphics Driver for Windows* before versions 10.18.x.5059 (aka 15.33.x.5059), 10.18.x.5057 (aka 15.36.x.5057), 20.19.x.5063 (aka 15.40.x.5063) 21.20.x.5064 (aka 15.45.x.5064) and 24.20.100.6373 potentially enables an unprivileged user to cause a denial of service via local access.
Buffer overflow in the command-line interface for Intel(R) PROSet Wireless v20.50 and before may allow an authenticated user to potentially enable denial of service via local access.
Potential memory corruption in Kernel Mode Driver in Intel(R) Graphics Driver for Windows* before versions 10.18.x.5059 (aka 15.33.x.5059), 10.18.x.5057 (aka 15.36.x.5057), 20.19.x.5063 (aka 15.40.x.5063) 21.20.x.5064 (aka 15.45.x.5064) and 24.20.100.6373 potentially enables an unprivileged user to cause a denial of service via local access.
Buffer overflow in installer for Intel Extreme Tuning Utility before 6.4.1.21 may allow an authenticated user to potentially cause a buffer overflow potentially leading to a denial of service via local access.
The kill_something_info function in kernel/signal.c in the Linux kernel before 4.13, when an unspecified architecture and compiler is used, might allow local users to cause a denial of service via an INT_MIN argument.
The nextvar function in NTP before 4.2.8p6 and 4.3.x before 4.3.90 does not properly validate the length of its input, which allows an attacker to cause a denial of service (application crash).
Buffer overflow in IBM i Access 7.1 on Windows allows local users to cause a denial of service (application crash) via unspecified vectors.
Improper validation for loop variable received from firmware can lead to out of bound access in WLAN function while iterating through loop in Snapdragon Auto, Snapdragon Compute, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music in APQ8053, APQ8096AU, APQ8098, MDM9640, MSM8996AU, MSM8998, QCA6574AU, QCN7605, QCS405, QCS605, SDA845, SDM845, SDX20
Buffer overflow in text-utils/colcrt.c in colcrt in util-linux before 2.27 allows local users to cause a denial of service (crash) via a crafted file, related to the page global variable.
Untrusted pointer dereference in some Intel(R) Graphics Drivers before versions 15.33.51.5146, 15.45.32.5145, 15.36.39.5144 and 15.40.46.5143 may allow an authenticated user to potentially denial of service via local access.
The Dumper method in Data::Dumper before 2.154, as used in Perl 5.20.1 and earlier, allows context-dependent attackers to cause a denial of service (stack consumption and crash) via an Array-Reference with many nested Array-References, which triggers a large number of recursive calls to the DD_dump function.
Buffer overflow in the Java GUI Configuration Wizard and Preferences Editor in the backup-archive client in IBM Tivoli Storage Manager (TSM) 5.x and 6.x before 6.2.5.2, 6.3.x before 6.3.2, and 6.4.x before 6.4.2 on Windows and OS X allows local users to cause a denial of service (application crash or hang) via unspecified vectors.
A vulnerability in the firmware signature checking program of Cisco Integrated Management Controller (IMC) could allow an authenticated, local attacker to cause a buffer overflow, resulting in a denial of service (DoS) condition. The vulnerability is due to insufficient checking of an input buffer. An attacker could exploit this vulnerability by passing a crafted file to the affected system. A successful exploit could inhibit an administrator's ability to access the system.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.ReverseSequence` allows for stack overflow and/or `CHECK`-fail based denial of service. The implementation(https://github.com/tensorflow/tensorflow/blob/5b3b071975e01f0d250c928b2a8f901cd53b90a7/tensorflow/core/kernels/reverse_sequence_op.cc#L114-L118) fails to validate that `seq_dim` and `batch_dim` arguments are valid. Negative values for `seq_dim` can result in stack overflow or `CHECK`-failure, depending on the version of Eigen code used to implement the operation. Similar behavior can be exhibited by invalid values of `batch_dim`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.