An out-of-bounds read was addressed with improved bounds checking. This issue is fixed in iOS 13.5 and iPadOS 13.5. A remote attacker may be able to cause arbitrary code execution.
Possible integer underflow due to lack of validation before calculation of data length in 802.11 Rx management configuration in Snapdragon Auto, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music in MDM9150, MDM9206, MDM9607, MDM9640, MDM9650, MSM8996AU, QCA6174A, QCA6574AU, QCA9377, QCA9379, QCS405, QCS605, SD 210/SD 212/SD 205, SD 425, SD 427, SD 430, SD 435, SD 450, SD 600, SD 625, SD 636, SD 665, SD 675, SD 712 / SD 710 / SD 670, SD 730, SD 820, SD 820A, SD 835, SD 845 / SD 850, SD 855, SDM630, SDM660, SDX20, SDX24
Possible OOB read issue in P2P action frames while handling WLAN management frame in Snapdragon Auto, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music in APQ8009, APQ8017, APQ8053, APQ8096AU, APQ8098, MDM9206, MDM9207C, MDM9607, MDM9650, MSM8996AU, MSM8998, QCA6174A, QCA6574AU, QCA9377, QCA9379, QCS405, QCS605, SDA660, SDM630, SDM636, SDM660, SDM670, SDM710, SDM845, SDX20, SM6150
Buffer over-read can occur while parsing an ogg file with a corrupted comment block. in Snapdragon Auto, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables in MDM9150, MDM9206, MDM9607, MDM9650, MSM8909W, MSM8996AU, QCS405, QCS605, Qualcomm 215, SD 210/SD 212/SD 205, SD 425, SD 427, SD 430, SD 435, SD 439 / SD 429, SD 450, SD 600, SD 615/16/SD 415, SD 625, SD 632, SD 636, SD 665, SD 675, SD 712 / SD 710 / SD 670, SD 730, SD 820, SD 820A, SD 835, SD 845 / SD 850, SD 855, SDA660, SDM439, SDM630, SDM660, SDX20
Possible out of bound read occurs while processing beaconing request due to lack of check on action frames received from user controlled space in Snapdragon Auto, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Mobile, Snapdragon Voice & Music in MDM9607, MSM8996AU, QCA6174A, QCA6574AU, QCA9377, QCA9379, QCS405, QCS605, SD 636, SD 665, SD 675, SD 712 / SD 710 / SD 670, SD 730, SD 820A, SD 845 / SD 850, SD 855, SDM630, SDM660, SDX24
Out of bound access when reason code is extracted from frame data without validating the frame length in Snapdragon Auto, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music in MDM9150, MDM9206, MDM9607, MDM9640, MDM9650, MSM8996AU, QCA6174A, QCA6574AU, QCA9377, QCA9379, QCS405, QCS605, SD 425, SD 427, SD 430, SD 435, SD 450, SD 625, SD 636, SD 665, SD 675, SD 712 / SD 710 / SD 670, SD 730, SD 820, SD 820A, SD 835, SD 845 / SD 850, SD 855, SDA660, SDM630, SDM660, SDX20, SDX24
SNDCP module may access array out side its boundary when it receives malformed XID message. in Snapdragon Auto, Snapdragon Compute, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables in APQ8009, APQ8017, APQ8053, APQ8096AU, APQ8098, MDM9150, MDM9205, MDM9206, MDM9607, MDM9615, MDM9625, MDM9635M, MDM9640, MDM9650, MDM9655, MSM8905, MSM8909, MSM8909W, MSM8917, MSM8920, MSM8937, MSM8939, MSM8940, MSM8953, MSM8976, MSM8996AU, MSM8998, Nicobar, QCM2150, QCS605, QM215, SC8180X, SDA660, SDA845, SDM429, SDM439, SDM450, SDM630, SDM632, SDM636, SDM660, SDM670, SDM710, SDM845, SDM850, SDX20, SDX24, SDX55, SM6150, SM7150, SM8150, SM8250, Snapdragon_High_Med_2016, SXR1130, SXR2130
libESMTP through 1.0.6 mishandles domain copying into a fixed-size buffer in ntlm_build_type_2 in ntlm/ntlmstruct.c, as demonstrated by a stack-based buffer over-read.
An issue was discovered on Samsung mobile devices with N(7.x), O(8.x), and P(9.0) (Broadcom chipsets) software. A heap out-of-bounds access can occur during LE Packet reception in Broadcom Bluetooth. The Samsung ID is SVE-2019-15724 (November 2019).
An issue was discovered in Adobe Flash Player 27.0.0.183 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer due to an integer overflow; the computation is part of the abstraction that creates an arbitrarily sized transparent or opaque bitmap image. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure.
An integer overflow in parse_mqtt in mongoose.c in Cesanta Mongoose 6.16 allows an attacker to achieve remote DoS (infinite loop), or possibly cause an out-of-bounds write, by sending a crafted MQTT protocol packet.
An integer overflow in the search_in_range function in regexec.c in Oniguruma 6.x before 6.9.4_rc2 leads to an out-of-bounds read, in which the offset of this read is under the control of an attacker. (This only affects the 32-bit compiled version). Remote attackers can cause a denial-of-service or information disclosure, or possibly have unspecified other impact, via a crafted regular expression.
Libntlm through 1.5 relies on a fixed buffer size for tSmbNtlmAuthRequest, tSmbNtlmAuthChallenge, and tSmbNtlmAuthResponse read and write operations, as demonstrated by a stack-based buffer over-read in buildSmbNtlmAuthRequest in smbutil.c for a crafted NTLM request.
contrib/pmdb2diag/pmdb2diag.c in Rsyslog v8.1908.0 allows out-of-bounds access because the level length is mishandled.
In wolfSSL through 4.1.0, there is a missing sanity check of memory accesses in parsing ASN.1 certificate data while handshaking. Specifically, there is a one-byte heap-based buffer over-read in CheckCertSignature_ex in wolfcrypt/src/asn.c.
libsoup from versions 2.65.1 until 2.68.1 have a heap-based buffer over-read because soup_ntlm_parse_challenge() in soup-auth-ntlm.c does not properly check an NTLM message's length before proceeding with a memcpy.
In all versions of ClickHouse before 19.14, an OOB read, OOB write and integer underflow in decompression algorithms can be used to achieve RCE or DoS via native protocol.
A Heap-based Buffer Overflow vulnerability exists in JerryScript 2.4.0 and prior versions via an out-of-bounds read in parser_parse_for_statement_start in the js-parser-statm.c file. This issue is similar to CVE-2020-29657.
Creolabs Gravity Version: 1.0 Heap Overflow Potential Code Execution. By creating a large loop whiling pushing data to a buffer, we can break out of the bounds checking of that buffer. When list.join is called on the data it will read past a buffer resulting in a Heap-Buffer-Overflow.
An issue was discovered in Suricata 4.1.4. By sending multiple IPv4 packets that have invalid IPv4Options, the function IPV4OptValidateTimestamp in decode-ipv4.c tries to access a memory region that is not allocated. There is a check for o->len < 5 (corresponding to 2 bytes of header and 3 bytes of data). Then, "flag = *(o->data + 3)" places one beyond the 3 bytes, because the code should have been "flag = *(o->data + 1)" instead.
lavc_CopyPicture in modules/codec/avcodec/video.c in VideoLAN VLC media player through 3.0.7 has a heap-based buffer over-read because it does not properly validate the width and height.
cJSON before 1.7.11 allows out-of-bounds access, related to \x00 in a string literal.
dhcp6.c in dhcpcd before 6.11.7 and 7.x before 7.2.2 has a buffer over-read in the D6_OPTION_PD_EXCLUDE feature.
cJSON before 1.7.11 allows out-of-bounds access, related to multiline comments.
An exploitable heap out-of-bounds read vulnerability exists in the way CoTURN 4.5.1.1 web server parses POST requests. A specially crafted HTTP POST request can lead to information leaks and other misbehavior. An attacker needs to send an HTTPS request to trigger this vulnerability.
Buffer over-read may occur when downloading a corrupted firmware file that has chunk length in header which doesn`t match the contents in Snapdragon Auto, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music in MDM9150, MDM9206, MDM9607, MDM9615, MDM9640, MDM9650, MSM8996AU, QCA6174A, QCA6574AU, QCA9377, QCA9379, SD 210/SD 212/SD 205, SD 425, SD 427, SD 430, SD 435, SD 450, SD 600, SD 625, SD 712 / SD 710 / SD 670, SD 820, SD 820A, SD 845 / SD 850, SDX20
Accessing data buffer beyond the available data while parsing ogg clip can lead to null-pointer dereference and then memory corruption in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables in APQ8009, APQ8017, APQ8053, APQ8064, APQ8096AU, APQ8098, MDM9206, MDM9207C, MDM9607, MSM8905, MSM8909, MSM8909W, MSM8917, MSM8939, MSM8953, MSM8996, MSM8996AU, Nicobar, QCS405, QCS605, QM215, SDA660, SDA845, SDM429, SDM439, SDM450, SDM630, SDM632, SDM636, SDM660, SDX20, SM6150, SM7150, SM8150, SM8250, SXR1130, SXR2130
Out of bound access while processing a non-standard IE measurement request with length crossing past the size of frame in Snapdragon Auto, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables in MDM9150, MDM9206, MDM9607, MDM9640, MDM9650, MSM8909W, MSM8996AU, QCA6174A, QCA6574AU, QCA9377, QCA9379, QCS405, SD 210/SD 212/SD 205, SD 425, SD 439 / SD 429, SD 450, SD 615/16/SD 415, SD 625, SD 632, SD 636, SD 650/52, SD 665, SD 675, SD 712 / SD 710 / SD 670, SD 730, SD 820A, SD 835, SD 845 / SD 850, SD 855, SDA660, SDM439, SDM630, SDM660, SDX20, SDX24
An issue was discovered in Suricata 4.1.x before 4.1.4. If the input of the function SSHParseBanner is composed only of a \n character, then the program runs into a heap-based buffer over-read. This occurs because the erroneous search for \r results in an integer underflow.
Linaro/OP-TEE OP-TEE 3.3.0 and earlier is affected by: Buffer Overflow. The impact is: Memory corruption and disclosure of memory content. The component is: optee_os. The fixed version is: 3.4.0 and later.
An issue was discovered in The Sleuth Kit (TSK) 4.6.6. There is an out of bounds read on iso9660 while parsing System Use Sharing Protocol data in fs/iso9660.c.
The verify_certificate function in lib/vtls/schannel.c in libcurl 7.30.0 through 7.51.0, when built for Windows CE using the schannel TLS backend, allows remote attackers to obtain sensitive information, cause a denial of service (crash), or possibly have unspecified other impact via a wildcard certificate name, which triggers an out-of-bounds read.
A flaw was found with the RHSA-2019:3950 erratum, where it did not fix the CVE-2019-13616 SDL vulnerability. This issue only affects Red Hat SDL packages, SDL versions through 1.2.15 and 2.x through 2.0.9 has a heap-based buffer overflow flaw while copying an existing surface into a new optimized one, due to a lack of validation while loading a BMP image, is possible. An application that uses SDL to parse untrusted input files may be vulnerable to this flaw, which could allow an attacker to make the application crash or execute code.
njs through 0.3.3, used in NGINX, has a buffer over-read in nxt_utf8_decode in nxt/nxt_utf8.c. This issue occurs after the fix for CVE-2019-12207 is in place.
An out-of-bounds read was possible in WhatsApp due to incorrect parsing of RTP extension headers. This issue affects WhatsApp for Android prior to 2.18.276, WhatsApp Business for Android prior to 2.18.99, WhatsApp for iOS prior to 2.18.100.6, WhatsApp Business for iOS prior to 2.18.100.2, and WhatsApp for Windows Phone prior to 2.18.224.
MatrixSSL before 4.2.1 has an out-of-bounds read during ASN.1 handling.
While padding or shrinking a nested wmi packet in all Android releases from CAF using the Linux kernel (Android for MSM, Firefox OS for MSM, QRD Android) before security patch level 2018-07-05, a buffer over-read can potentially occur.
The 'globbing' feature in curl before version 7.51.0 has a flaw that leads to integer overflow and out-of-bounds read via user controlled input.
While parsing a Flac file with a corrupted comment block, a buffer over-read can occur in Snapdragon Automobile, Snapdragon Mobile and Snapdragon Wear.
In Qualcomm Android for MSM, Firefox OS for MSM, and QRD Android with all Android releases from CAF using the Linux kernel before security patch level 2018-04-05, in function wma_wow_wakeup_host_event(), wake_info->vdev_id is received from FW and is used directly as array index to access wma->interfaces whose max index should be (max_bssid-1). If wake_info->vdev_id is greater than or equal to max_bssid, an out-of-bounds read occurs.
Multiple integer overflows in X.org libXtst before 1.2.3 allow remote X servers to trigger out-of-bounds memory access operations by leveraging the lack of range checks.
In macOS High Sierra before 10.13.3, Security Update 2018-001 Sierra, and Security Update 2018-001 El Capitan, an out-of-bounds read was addressed with improved input validation.
URI_FUNC() in UriParse.c in uriparser before 0.9.1 has an out-of-bounds read (in uriParse*Ex* functions) for an incomplete URI with an IPv6 address containing an embedded IPv4 address, such as a "//[::44.1" address.
FFmpeg before commit cced03dd667a5df6df8fd40d8de0bff477ee02e8 contains multiple out of array access vulnerabilities in the mms protocol that can result in attackers accessing out of bound data. This attack appear to be exploitable via network connectivity. This vulnerability appears to have been fixed in cced03dd667a5df6df8fd40d8de0bff477ee02e8 and later.
Insufficient boundary checks when processing a string in mb_ereg_replace allows access to out-of-bounds memory. This issue affects HHVM versions prior to 3.30.12, all versions between 4.0.0 and 4.8.5, all versions between 4.9.0 and 4.23.1, as well as 4.24.0, 4.25.0, 4.26.0, 4.27.0, 4.28.0, and 4.28.1.
A crash and out-of-bounds read can occur when the buffer of a texture client is freed while it is still in use during graphic operations. This results is a potentially exploitable crash and the possibility of reading from the memory of the freed buffers. This vulnerability affects Firefox < 65.
An issue was discovered in the HDF HDF5 1.8.20 library. There is a stack-based buffer over-read in the function H5F_addr_decode_len in H5Fint.c.
The locale_accept_from_http function in ext/intl/locale/locale_methods.c in PHP before 5.5.38, 5.6.x before 5.6.24, and 7.x before 7.0.9 does not properly restrict calls to the ICU uloc_acceptLanguageFromHTTP function, which allows remote attackers to cause a denial of service (out-of-bounds read) or possibly have unspecified other impact via a call with a long argument.
The get_cookies function in soup-cookie-jar.c in libsoup 2.63.2 allows attackers to have unspecified impact via an empty hostname.
An issue was discovered in the HDF HDF5 1.8.20 library. There is a buffer over-read in H5O_chunk_deserialize in H5Ocache.c.