An issue was discovered in Xen through 4.12.x allowing 32-bit Arm guest OS users to cause a denial of service (out-of-bounds access) because certain bit iteration is mishandled. In a number of places bitmaps are being used by the hypervisor to track certain state. Iteration over all bits involves functions which may misbehave in certain corner cases: On 32-bit Arm accesses to bitmaps with bit a count which is a multiple of 32, an out of bounds access may occur. A malicious guest may cause a hypervisor crash or hang, resulting in a Denial of Service (DoS). All versions of Xen are vulnerable. 32-bit Arm systems are vulnerable. 64-bit Arm systems are not vulnerable.
Arm provides multiple helpers to clean & invalidate the cache for a given region. This is, for instance, used when allocating guest memory to ensure any writes (such as the ones during scrubbing) have reached memory before handing over the page to a guest. Unfortunately, the arithmetics in the helpers can overflow and would then result to skip the cache cleaning/invalidation. Therefore there is no guarantee when all the writes will reach the memory.
The x86-64 kernel system-call functionality in Xen 4.1.2 and earlier, as used in Citrix XenServer 6.0.2 and earlier and other products; Oracle Solaris 11 and earlier; illumos before r13724; Joyent SmartOS before 20120614T184600Z; FreeBSD before 9.0-RELEASE-p3; NetBSD 6.0 Beta and earlier; Microsoft Windows Server 2008 R2 and R2 SP1 and Windows 7 Gold and SP1; and possibly other operating systems, when running on an Intel processor, incorrectly uses the sysret path in cases where a certain address is not a canonical address, which allows local users to gain privileges via a crafted application. NOTE: because this issue is due to incorrect use of the Intel specification, it should have been split into separate identifiers; however, there was some value in preserving the original mapping of the multi-codebase coordinated-disclosure effort to a single identifier.
Buffer overflow in hw/scsi-disk.c in the SCSI subsystem in QEMU before 0.15.2, as used by Xen, might allow local guest users with permission to access the CD-ROM to cause a denial of service (guest crash) via a crafted SAI READ CAPACITY SCSI command. NOTE: this is only a vulnerability when root has manually modified certain permissions or ACLs.
An issue was discovered in Xen 4.7 through 4.10.x. libxl fails to pass the readonly flag to qemu when setting up a SCSI disk, due to what was probably an erroneous merge conflict resolution. Malicious guest administrators or (in some situations) users may be able to write to supposedly read-only disk images. Only emulated SCSI disks (specified as "sd" in the libxl disk configuration, or an equivalent) are affected. IDE disks ("hd") are not affected (because attempts to make them readonly are rejected). Additionally, CDROM devices (that is, devices specified to be presented to the guest as CDROMs, regardless of the nature of the backing storage on the host) are not affected; they are always read only. Only systems using qemu-xen (rather than qemu-xen-traditional) as the device model version are vulnerable. Only systems using libxl or libxl-based toolstacks are vulnerable. (This includes xl, and libvirt with the libxl driver.) The vulnerability is present in Xen versions 4.7 and later. (In earlier versions, provided that the patch for XSA-142 has been applied, attempts to create read only disks are rejected.) If the host and guest together usually support PVHVM, the issue is exploitable only if the malicious guest administrator has control of the guest kernel or guest kernel command line.
An issue was discovered in Xen through 4.10.x allowing x86 HVM guest OS users (in certain configurations) to read arbitrary dom0 files via QMP live insertion of a CDROM, in conjunction with specifying the target file as the backing file of a snapshot.
Xen PV guest before Xen 4.3 checked access permissions to MMIO ranges only after accessing them, allowing host PCI device space memory reads, leading to information disclosure. This is an error in the get_user function. NOTE: the upstream Xen Project considers versions before 4.5.x to be EOL.
An issue was discovered in Xen through 4.9.x on the ARM platform allowing guest OS users to obtain sensitive information from DRAM after a reboot, because disjoint blocks, and physical addresses that do not start at zero, are mishandled.
An issue was discovered in Xen through 4.9.x allowing guest OS users to cause a denial of service (host OS crash) or gain host OS privileges by leveraging an incorrect mask for reference-count overflow checking in shadow mode.
An issue was discovered in Xen through 4.9.x allowing x86 HVM guest OS users to obtain sensitive information from the host OS (or an arbitrary guest OS) because intercepted I/O operations can cause a write of data from uninitialized hypervisor stack memory.
Xen maintains the _GTF_{read,writ}ing bits as appropriate, to inform the guest that a grant is in use. A guest is expected not to modify the grant details while it is in use, whereas the guest is free to modify/reuse the grant entry when it is not in use. Under some circumstances, Xen will clear the status bits too early, incorrectly informing the guest that the grant is no longer in use. A guest may prematurely believe that a granted frame is safely private again, and reuse it in a way which contains sensitive information, while the domain on the far end of the grant is still using the grant. Xen 4.9, 4.8, 4.7, 4.6, and 4.5 are affected.
Stack-based buffer overflow in lcfd.exe in Tivoli Endpoint in IBM Tivoli Management Framework 3.7.1, 4.1, 4.1.1, and 4.3.1 allows remote authenticated users to execute arbitrary code via a long opts field.
Stack-based buffer overflow in NWFTPD.NLM before 5.10.02 in the FTP server in Novell NetWare allows remote authenticated users to execute arbitrary code or cause a denial of service (abend) via a long DELE command, a different vulnerability than CVE-2010-0625.4.
Stack-based buffer overflow in an unspecified logging function in oninit.exe in IBM Informix Dynamic Server (IDS) 11.10 before 11.10.xC2W2 and 11.50 before 11.50.xC1 allows remote authenticated users to execute arbitrary code via a crafted EXPLAIN directive, aka idsdb00154125 and idsdb00154243.
A vulnerability was detected in Tenda i22 1.0.0.3(4687). This impacts the function formWeixinAuthInfoGet of the file /goform/wxportalauth. Performing manipulation of the argument Type results in stack-based buffer overflow. The attack can be initiated remotely. The exploit is now public and may be used.
Stack-based buffer overflow in the IMAP server component in GroupWise Internet Agent (GWIA) in Novell GroupWise 7.x before 7.0 post-SP4 FTF and 8.x before 8.0 SP2 allows remote attackers to execute arbitrary code via a long mailbox name in a CREATE command.
A vulnerability was found in Linksys RE6250, RE6300, RE6350, RE6500, RE7000 and RE9000 1.0.013.001/1.0.04.001/1.0.04.002/1.1.05.003/1.2.07.001. Affected by this vulnerability is the function scheduleAdd of the file /goform/scheduleAdd. Performing manipulation of the argument ruleName results in stack-based buffer overflow. The attack is possible to be carried out remotely. The exploit has been made public and could be used. The vendor was contacted early about this disclosure but did not respond in any way.
A vulnerability has been found in Tenda AC7 and AC18 15.03.05.19/15.03.06.44. Affected is the function formSetSchedLed of the file /goform/SetLEDCfg. The manipulation of the argument Time leads to buffer overflow. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used.
A vulnerability classified as critical has been found in UTT 进取 750W up to 3.2.2-191225. This affects an unknown part of the file /goform/Fast_wireless_conf. The manipulation of the argument ssid leads to buffer overflow. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
Multiple stack-based buffer overflows in the jclient._Java_novell_jclient_JClient_defineClass@20 function in jclient.dll in the Tomcat web server in Novell iManager 2.7, 2.7.3, and 2.7.3 FTF2 allow remote authenticated users to execute arbitrary code via the (1) EnteredClassID or (2) NewClassName parameter to nps/servlet/webacc.
A vulnerability has been found in Tenda AC6 15.03.06.50 and classified as critical. Affected by this vulnerability is the function setparentcontrolinfo of the component httpd. The manipulation leads to buffer overflow. The attack can be launched remotely.
The fix_hostname function in cURL and libcurl 7.37.0 through 7.41.0 does not properly calculate an index, which allows remote attackers to cause a denial of service (out-of-bounds read or write and crash) or possibly have other unspecified impact via a zero-length host name, as demonstrated by "http://:80" and ":80."
Heap-based buffer overflow in the Local Security Authority Subsystem Service (LSASS), as used in Active Directory in Microsoft Windows Server 2003 SP2 and Windows Server 2008 Gold, SP2, and R2; Active Directory Application Mode (ADAM) in Windows XP SP2 and SP3 and Windows Server 2003 SP2; and Active Directory Lightweight Directory Service (AD LDS) in Windows Vista SP2, Windows Server 2008 Gold, SP2, and R2, and Windows 7, allows remote authenticated users to execute arbitrary code via malformed LDAP messages, aka "LSASS Heap Overflow Vulnerability."
An issue was discovered on D-Link DSL-3782 EU 1.01 devices. An authenticated user can pass a long buffer as a 'commit' parameter to the '/userfs/bin/tcapi' binary (in the Diagnostics component) using the 'commit <node_name>' function and cause memory corruption. Furthermore, it is possible to redirect the flow of the program and execute arbitrary code.
Stack-based buffer overflow in the IMAP service in NetWin SurgeMail 38k4-4 and earlier allows remote authenticated users to execute arbitrary code via long arguments to the LSUB command.
A vulnerability, which was classified as critical, has been found in Tenda AC9 15.03.02.13. Affected by this issue is the function fromadvsetlanip of the file /goform/AdvSetLanip of the component POST Request Handler. The manipulation of the argument lanMask leads to buffer overflow. The attack may be launched remotely. The exploit has been disclosed to the public and may be used.
A vulnerability classified as critical has been found in TP-LINK Technologies TL-IPC544EP-W4 1.0.9 Build 240428 Rel 69493n. Affected is the function sub_69064 of the file /bin/main. The manipulation of the argument text leads to buffer overflow. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
A vulnerability classified as critical has been found in Tenda FH1201 1.2.0.14(408). This affects an unknown part of the file /goform/SafeMacFilter. The manipulation of the argument page leads to stack-based buffer overflow. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used.
A vulnerability, which was classified as critical, was found in TOTOLINK EX1200T up to 4.1.2cu.5232_B20210713. Affected is an unknown function of the file /boafrm/formReflashClientTbl of the component HTTP POST Request Handler. The manipulation leads to buffer overflow. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used.
A vulnerability was found in TOTOLINK X15 1.0.0-B20230714.1105 and classified as critical. This issue affects some unknown processing of the file /boafrm/formSetLg of the component HTTP POST Request Handler. The manipulation of the argument submit-url leads to buffer overflow. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
A vulnerability was found in TOTOLINK X15 1.0.0-B20230714.1105. It has been declared as critical. Affected by this vulnerability is an unknown functionality of the file /boafrm/formDosCfg of the component HTTP POST Request Handler. The manipulation of the argument submit-url leads to buffer overflow. The attack can be launched remotely. The exploit has been disclosed to the public and may be used.
Stack-based buffer overflow in the dhost module in Novell eDirectory 8.8 SP5 for Windows allows remote authenticated users to execute arbitrary code via long sadminpwd and verifypwd parameters in a submit action to /dhost/httpstk.
Stack-based buffer overflow in the dhost module in Novell eDirectory 8.8 SP5 for Windows allows remote authenticated users to cause a denial of service (dhost.exe crash) and possibly execute arbitrary code via a long string to /dhost/modules?I:.
A vulnerability in the SNMP implementation of could allow an authenticated, remote attacker to cause a reload of the affected system or to remotely execute code. An attacker could exploit this vulnerability by sending a crafted SNMP packet to the affected device. The vulnerability is due to a buffer overflow in the affected code area. The vulnerability affects all versions of SNMP (versions 1, 2c, and 3). The attacker must know the SNMP read only community string (SNMP version 2c or earlier) or the user credentials (SNMPv3). An exploit could allow the attacker to execute arbitrary code and obtain full control of the system or to cause a reload of the affected system. Only traffic directed to the affected system can be used to exploit this vulnerability.
Stack-based buffer overflow in the eap_do_notify function in eap.c in xsupplicant before 1.2.6, and possibly other versions, allows remote authenticated users to execute arbitrary code via unspecified vectors.
Multiple buffer overflows in Rumpus before 6.0.1 allow remote attackers to (1) cause a denial of service (segmentation fault) via a long HTTP verb in the HTTP component; and allow remote authenticated users to execute arbitrary code via a long argument to the (2) MKD, (3) XMKD, (4) RMD, and other unspecified commands in the FTP component.
Stack-based buffer overflow in WFTPSRV.exe in WinFTP 2.3.0 allows remote authenticated users to execute arbitrary code via a long LIST argument beginning with an * (asterisk) character.
Multiple buffer overflows in freeSSHd 1.2.1 allow remote authenticated users to cause a denial of service (crash) and execute arbitrary code via a long (1) open, (2) unlink, (3) mkdir, (4) rmdir, or (5) stat SFTP command.
Heap-based buffer overflow in Microsoft SQL Server 2000 SP4, 8.00.2050, 8.00.2039, and earlier; SQL Server 2000 Desktop Engine (MSDE 2000) SP4; SQL Server 2005 SP2 and 9.00.1399.06; SQL Server 2000 Desktop Engine (WMSDE) on Windows Server 2003 SP1 and SP2; and Windows Internal Database (WYukon) SP2 allows remote authenticated users to cause a denial of service (access violation exception) or execute arbitrary code by calling the sp_replwritetovarbin extended stored procedure with a set of invalid parameters that trigger memory overwrite, aka "SQL Server sp_replwritetovarbin Limited Memory Overwrite Vulnerability."
Buffer overflow in the data management protocol in Symantec Backup Exec for Windows Servers 11.0 (aka 11d) builds 6235 and 7170, 12.0 build 1364, and 12.5 build 2213 allows remote authenticated users to cause a denial of service (application crash) and possibly execute arbitrary code via unknown vectors. NOTE: this can be exploited by unauthenticated remote attackers by leveraging CVE-2008-5407.
On Insteon Hub 2245-222 devices with firmware version 1012, specially crafted replies received from the PubNub service can cause buffer overflows on a global section overwriting arbitrary data. An attacker should impersonate PubNub and answer an HTTPS GET request to trigger this vulnerability. A strcpy overflows the buffer insteon_pubnub.channel_ad_r, which has a size of 16 bytes. An attacker can send an arbitrarily long "ad_r" parameter in order to exploit this vulnerability.
On Insteon Hub 2245-222 devices with firmware version 1012, specially crafted replies received from the PubNub service can cause buffer overflows on a global section overwriting arbitrary data. An attacker should impersonate PubNub and answer an HTTPS GET request to trigger this vulnerability. A strcpy overflows the buffer insteon_pubnub.channel_ak, which has a size of 16 bytes. An attacker can send an arbitrarily long "ak" parameter in order to exploit this vulnerability.
Multiple stack-based buffer overflows in TP-Link WR940N WiFi routers with hardware version 4 allow remote authenticated users to execute arbitrary code via the (1) ping_addr parameter to PingIframeRpm.htm or (2) dnsserver2 parameter to WanStaticIpV6CfgRpm.htm.
A weakness has been identified in Linksys RE6250, RE6300, RE6350, RE6500, RE7000 and RE9000 1.0.013.001/1.0.04.001/1.0.04.002/1.1.05.003/1.2.07.001. This issue affects the function RP_checkCredentialsByBBS of the file /goform/RP_checkCredentialsByBBS. This manipulation of the argument ssidhex/pwd causes stack-based buffer overflow. The attack can be initiated remotely. The exploit has been made available to the public and could be exploited. The vendor was contacted early about this disclosure but did not respond in any way.
A vulnerability has been found in Tenda CH22 1.0.0.1. Affected by this issue is the function formeditFileName of the file /goform/editFileName. The manipulation leads to buffer overflow. The attack may be launched remotely. The exploit has been disclosed to the public and may be used.
A vulnerability was detected in Linksys RE6250, RE6300, RE6350, RE6500, RE7000 and RE9000 1.0.013.001/1.0.04.001/1.0.04.002/1.1.05.003/1.2.07.001. This vulnerability affects the function addStaProfile of the file /goform/addStaProfile. Performing manipulation of the argument profile_name/Ssid/wep_key_1/wep_key_2/wep_key_3/wep_key_4/wep_key_length/wep_default_key/cipher/passphrase results in stack-based buffer overflow. Remote exploitation of the attack is possible. The exploit is now public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
A vulnerability was determined in Tenda AC20 16.03.08.12. This issue affects the function sub_48E628 of the file /goform/SetIpMacBind. The manipulation of the argument list leads to stack-based buffer overflow. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
A vulnerability has been found in Tenda AC20 16.03.08.12. This affects the function set_qosMib_list of the file /goform/SetNetControlList of the component SetNetControlList Endpoint. The manipulation of the argument list leads to stack-based buffer overflow. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used.
A vulnerability was found in Tenda AC20 16.03.08.05. It has been declared as critical. Affected by this vulnerability is an unknown functionality of the file /goform/SetStaticRouteCfg. The manipulation of the argument list leads to stack-based buffer overflow. The attack can be launched remotely. The exploit has been disclosed to the public and may be used.
A security vulnerability has been detected in Linksys RE6250, RE6300, RE6350, RE6500, RE7000 and RE9000 1.0.013.001/1.0.04.001/1.0.04.002/1.1.05.003/1.2.07.001. Affected by this issue is the function RP_doSpecifySiteSurvey of the file /goform/RP_doSpecifySiteSurvey. The manipulation of the argument ssidhex leads to stack-based buffer overflow. The attack may be initiated remotely. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way.