An exploitable heap buffer overflow vulnerability exists in the X509 certificate parsing functionality of InsideSecure MatrixSSL 3.8.7b. A specially crafted x509 certificate can cause a buffer overflow on the heap resulting in remote code execution. To trigger this vulnerability, a specially crafted x509 certificate must be presented to the vulnerable client or server application when initiating secure connection.
In MatrixSSL 3.8.3 Open through 4.2.1 Open, the DTLS server mishandles incoming network messages leading to a heap-based buffer overflow of up to 256 bytes and possible Remote Code Execution in parseSSLHandshake in sslDecode.c. During processing of a crafted packet, the server mishandles the fragment length value provided in the DTLS message.
pubRsaDecryptSignedElementExt in MatrixSSL 4.0.1 Open, as used in Inside Secure TLS Toolkit, has a stack-based buffer overflow during X.509 certificate verification because of missing validation in psRsaDecryptPubExt in crypto/pubkey/rsa_pub.c.
MatrixSSL 4.0.4 through 4.5.1 has an integer overflow in matrixSslDecodeTls13. A remote attacker might be able to send a crafted TLS Message to cause a buffer overflow and achieve remote code execution. This is fixed in 4.6.0.
MatrixSSL before 4.2.1 has an out-of-bounds read during ASN.1 handling.
In MatrixSSL before 4.2.2 Open, the DTLS server can encounter an invalid pointer free (leading to memory corruption and a daemon crash) via a crafted incoming network message, a different vulnerability than CVE-2019-14431.
An out-of-bounds write vulnerability exists in the PQS format coord_file functionality of Open Babel 3.1.1 and master commit 530dbfa3. A specially crafted malformed file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
An out-of-bounds write vulnerability exists in the sopen_FAMOS_read functionality of The Biosig Project libbiosig 2.5.0 and Master Branch (ab0ee111). A specially crafted .famos file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
Buffer overflow in CPCA font download processing of Small Office Multifunction Printers and Laser Printers(*) which may allow an attacker on the network segment to trigger the affected product being unresponsive or to execute arbitrary code. *: Satera MF656Cdw/Satera MF654Cdw firmware v05.04 and earlier sold in Japan. Color imageCLASS MF656Cdw/Color imageCLASS MF654Cdw/Color imageCLASS MF653Cdw/Color imageCLASS MF652Cdw/Color imageCLASS LBP633Cdw/Color imageCLASS LBP632Cdw firmware v05.04 and earlier sold in US. i-SENSYS MF657Cdw/i-SENSYS MF655Cdw/i-SENSYS MF651Cdw/i-SENSYS LBP633Cdw/i-SENSYS LBP631Cdw firmware v05.04 and earlier sold in Europe.
Jsish v3.5.0 (commit 42c694c) was discovered to contain a stack-overflow via the component IterGetKeysCallback at /jsish/src/jsiValue.c.
D-Link DIR-816 A2 1.10 B05 was discovered to contain a stack overflow via the wizardstep4_pskpwd parameter at /goform/form2WizardStep4.
A heap-based buffer overflow vulnerability exists in the GGUF library header.n_kv functionality of llama.cpp Commit 18c2e17. A specially crafted .gguf file can lead to code execution. An attacker can provide a malicious file to trigger this vulnerability.
Jsish v3.5.0 was discovered to contain a heap-buffer-overflow in ./src/jsiUtils.c.
handle_request in http.c in cherry through 4b877df has an sscanf stack-based buffer overflow via a long URI, leading to remote code execution.
D-Link DIR-882 DIR882A1_FW130B06 was discovered to contain a stack overflow via the sub_477AA0 function.
There is a stack-overflow at ecma-regexp-object.c:535 in ecma_regexp_match in JerryScript 2.2.0.
An exploitable stack-based buffer overflow vulnerability exists in the 802dot1xclientcert.cgi functionality of Sony IPELA E Series Camera G5 firmware 1.87.00. A specially crafted POST can cause a stack-based buffer overflow, resulting in remote code execution. An attacker can send a malicious POST request to trigger this vulnerability.
D-Link DIR-816 A2 1.10 B05 was discovered to contain a stack overflow via the pskValue parameter in the setSecurity function.
An out-of-bounds write vulnerability exists in the JPEG2000Codec::DecodeByStreamsCommon functionality of Mathieu Malaterre Grassroot DICOM 3.0.23. A specially crafted DICOM file can lead to a heap buffer overflow. An attacker can provide a malicious file to trigger this vulnerability.
A heap-based buffer overflow was found in libwebp in versions before 1.0.1 in PutLE16().
An issue was discovered in the actix-web crate before 0.7.15 for Rust. It can unsoundly coerce an immutable reference into a mutable reference, leading to memory corruption.
pdf2json v0.71 was discovered to contain a stack buffer overflow in the component XRef::fetch.
In D-LINK Go-RT-AC750 v101b03, the sprintf function in the sub_40E700 function within the cgibin is susceptible to stack overflow.
Tenda AC23 V16.03.07.45_cn was discovered to contain a stack overflow via the shareSpeed parameter in the fromSetWifiGusetBasic function.
An issue was discovered on Samsung mobile devices with N(7.x) and O(8.X) (Exynos chipsets) software. There is an arbitrary memory write in a Trustlet because a secure driver allows access to sensitive APIs. The Samsung ID is SVE-2018-12881 (November 2018).
An issue was discovered on Samsung mobile devices with N(7.x) O(8.x, and P(9.0) (Exynos chipsets) software. There is a stack-based buffer overflow in the Shannon Baseband. The Samsung ID is SVE-2018-12757 (September 2018).
route in main.c in Pico HTTP Server in C through f3b69a6 has an sprintf stack-based buffer overflow via a long URI, leading to remote code execution.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects WAC505 before 5.0.0.17 and WAC510 before 5.0.0.17.
LibVNC before 0.9.12 contains multiple heap out-of-bounds write vulnerabilities in libvncclient/rfbproto.c. The fix for CVE-2018-20019 was incomplete.
An issue was discovered in the actix-web crate before 0.7.15 for Rust. It can add the Send marker trait to an object that cannot be sent between threads safely, leading to memory corruption.
A heap-based buffer overflow vulnerability exists in the GGUF library GGUF_TYPE_ARRAY/GGUF_TYPE_STRING parsing functionality of llama.cpp Commit 18c2e17. A specially crafted .gguf file can lead to code execution. An attacker can provide a malicious file to trigger this vulnerability.
Buffer overflow in identifier field of WSD probe request process of Small Office Multifunction Printers and Laser Printers(*) which may allow an attacker on the network segment to trigger the affected product being unresponsive or to execute arbitrary code.*:Satera MF740C Series/Satera MF640C Series/Satera LBP660C Series/Satera LBP620C Series firmware v12.07 and earlier, and Satera MF750C Series/Satera LBP670C Series firmware v03.09 and earlier sold in Japan.Color imageCLASS MF740C Series/Color imageCLASS MF640C Series/Color imageCLASS X MF1127C/Color imageCLASS LBP664Cdw/Color imageCLASS LBP622Cdw/Color imageCLASS X LBP1127C firmware v12.07 and earlier, and Color imageCLASS MF750C Series/Color imageCLASS X MF1333C/Color imageCLASS LBP674Cdw/Color imageCLASS X LBP1333C firmware v03.09 and earlier sold in US.i-SENSYS MF740C Series/i-SENSYS MF640C Series/C1127i Series/i-SENSYS LBP660C Series/i-SENSYS LBP620C Series/C1127P firmware v12.07 and earlier, and i-SENSYS MF750C Series/C1333i Series/i-SENSYS LBP673Cdw/C1333P firmware v03.09 and earlier sold in Europe.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects R6700 before 1.0.1.48, R7900 before 1.0.2.16, R6900 before 1.0.1.48, R7000P before 1.3.1.44, R6900P before 1.3.1.44, R6250 before 1.0.4.30, R6300v2 before 1.0.4.32, R6400 before 1.0.1.44, R6400v2 before 1.0.2.60, R7000 before 1.0.9.34, R7100LG before 1.0.0.48, R7300 before 1.0.0.68, R8000 before 1.0.4.18, R8000P before 1.4.1.24, R7900P before 1.4.1.24, R8500 before 1.0.2.122, R8300 before 1.0.2.122, WN2500RPv2 before 1.0.1.54, EX3700 before 1.0.0.72, EX3800 before 1.0.0.72, EX6000 before 1.0.0.32, EX6100 before 1.0.2.24, EX6120 before 1.0.0.42, EX6130 before 1.0.0.24, EX6150v1 before 1.0.0.42, EX6200 before 1.0.3.88, EX7000 before 1.0.0.66, D7000v2 before 1.0.0.51, D6220 before 1.0.0.46, D6400 before 1.0.0.82, and D8500 before 1.0.3.42.
TOTOLINK A3700R_V9.1.2u.6165_20211012 has a stack overflow vulnerability via setParentalRules
A heap-based buffer overflow vulnerability exists in the GGUF library header.n_tensors functionality of llama.cpp Commit 18c2e17. A specially crafted .gguf file can lead to code execution. An attacker can provide a malicious file to trigger this vulnerability.
An issue was discovered in the actix-web crate before 0.7.15 for Rust. It can unsoundly extend the lifetime of a string, leading to memory corruption.
An issue was discovered on Samsung mobile devices with L(5.x), M(6.x), and N(7.x) software. There is a vnswap heap-based buffer overflow via the store function, with resultant privilege escalation. The Samsung ID is SVE-2017-10599 (January 2018).
When receiving calls using WhatsApp for iOS, a missing size check when parsing a sender-provided packet allowed for a stack-based overflow. This issue affects WhatsApp for iOS prior to v2.18.90.24 and WhatsApp Business for iOS prior to v2.18.90.24.
LibVNC before commit 7b1ef0ffc4815cab9a96c7278394152bdc89dc4d contains heap out-of-bound write vulnerability inside structure in VNC client code that can result remote code execution
An Out-of-bounds Write vulnerability in J-Web of Juniper Networks Junos OS on SRX Series and EX Series allows an unauthenticated, network-based attacker to cause a Denial of Service (DoS), or Remote Code Execution (RCE) and obtain root privileges on the device. This issue is caused by use of an insecure function allowing an attacker to overwrite arbitrary memory. This issue affects Juniper Networks Junos OS SRX Series and EX Series: * Junos OS versions earlier than 20.4R3-S9; * Junos OS 21.2 versions earlier than 21.2R3-S7; * Junos OS 21.3 versions earlier than 21.3R3-S5; * Junos OS 21.4 versions earlier than 21.4R3-S5; * Junos OS 22.1 versions earlier than 22.1R3-S4; * Junos OS 22.2 versions earlier than 22.2R3-S3; * Junos OS 22.3 versions earlier than 22.3R3-S2; * Junos OS 22.4 versions earlier than 22.4R2-S2, 22.4R3.
A heap-based buffer overflow vulnerability exists in the .egi parsing functionality of The Biosig Project libbiosig 2.5.0 and Master Branch (ab0ee111). A specially crafted .egi file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
LibVNC before commit a83439b9fbe0f03c48eb94ed05729cb016f8b72f contains multiple heap out-of-bound write vulnerabilities in VNC client code that can result remote code execution
rdesktop versions up to and including v1.8.3 contain an Integer Overflow that leads to a Heap-Based Buffer Overflow in the function rdp_in_unistr() and results in memory corruption and possibly even a remote code execution.
Memory corruption while redirecting log file to any file location with any file name.
An issue was discovered in /bin/boa on D-Link DIR-619L Rev.B 2.06B1 and DIR-605L Rev.B 2.12B1 devices. There is a stack-based buffer overflow allowing remote attackers to execute arbitrary code without authentication via the goform/formLanguageChange currTime parameter.
Tenda AC23 V16.03.07.45_cn was discovered to contain a stack overflow via the time parameter in the setSmartPowerManagement function.
D-Link DIR-816 A2 1.10 B05 devices allow arbitrary remote code execution without authentication via the newpass parameter. In the /goform/form2userconfig.cgi handler function, a long password may lead to a stack-based buffer overflow and overwrite a return address.
rdesktop versions up to and including v1.8.3 contain an Integer Underflow that leads to a Heap-Based Buffer Overflow in the function seamless_process() and results in memory corruption and probably even a remote code execution.
thttpd 2007 has buffer underflow.
Adobe Acrobat and Reader versions 2019.008.20081 and earlier, 2019.008.20080 and earlier, 2019.008.20081 and earlier, 2017.011.30106 and earlier version, 2017.011.30105 and earlier version, 2015.006.30457 and earlier, and 2015.006.30456 and earlier have a heap overflow vulnerability. Successful exploitation could lead to arbitrary code execution.