An issue was discovered in QEMU through 5.1.0. An out-of-bounds memory access was found in the ATI VGA device implementation. This flaw occurs in the ati_2d_blt() routine in hw/display/ati_2d.c while handling MMIO write operations through the ati_mm_write() callback. A malicious guest could use this flaw to crash the QEMU process on the host, resulting in a denial of service.
QEMU (aka Quick Emulator), when built with the VGA display emulator support, allows local guest OS privileged users to cause a denial of service (out-of-bounds read and QEMU process crash) via vectors involving display update.
The dhcp_decode function in slirp/bootp.c in QEMU (aka Quick Emulator) allows local guest OS users to cause a denial of service (out-of-bounds read and QEMU process crash) via a crafted DHCP options string.
The address_space_write_continue function in exec.c in QEMU (aka Quick Emulator) allows local guest OS privileged users to cause a denial of service (out-of-bounds access and guest instance crash) by leveraging use of qemu_map_ram_ptr to access guest ram block area.
An out-of-bounds read flaw was found in the QXL display device emulation in QEMU. The qxl_phys2virt() function does not check the size of the structure pointed to by the guest physical address, potentially reading past the end of the bar space into adjacent pages. A malicious guest user could use this flaw to crash the QEMU process on the host causing a denial of service condition.
The virgl_cmd_get_capset function in hw/display/virtio-gpu-3d.c in QEMU (aka Quick Emulator) built with Virtio GPU Device emulator support allows local guest OS users to cause a denial of service (out-of-bounds read and process crash) via a VIRTIO_GPU_CMD_GET_CAPSET command with a maximum capabilities size with a value of 0.
The virtio_gpu_set_scanout function in QEMU (aka Quick Emulator) built with Virtio GPU Device emulator support allows local guest OS users to cause a denial of service (out-of-bounds read and process crash) via a scanout id in a VIRTIO_GPU_CMD_SET_SCANOUT command larger than num_scanouts.
An issue was discovered in the Linux kernel before 5.14.15. There is an array-index-out-of-bounds flaw in the detach_capi_ctr function in drivers/isdn/capi/kcapi.c.
A memory out-of-bounds read flaw was found in the Linux kernel before 5.9-rc2 with the ext3/ext4 file system, in the way it accesses a directory with broken indexing. This flaw allows a local user to crash the system if the directory exists. The highest threat from this vulnerability is to system availability.
hw/pci/pci.c in QEMU 4.2.0 allows guest OS users to trigger an out-of-bounds access by providing an address near the end of the PCI configuration space.
sd_wp_addr in hw/sd/sd.c in QEMU 4.2.0 uses an unvalidated address, which leads to an out-of-bounds read during sdhci_write() operations. A guest OS user can crash the QEMU process.
In QEMU 5.0.0 and earlier, megasas_lookup_frame in hw/scsi/megasas.c has an out-of-bounds read via a crafted reply_queue_head field from a guest OS user.
An out-of-bounds heap buffer access issue was found in the ARM Generic Interrupt Controller emulator of QEMU up to and including qemu 4.2.0on aarch64 platform. The issue occurs because while writing an interrupt ID to the controller memory area, it is not masked to be 4 bits wide. It may lead to the said issue while updating controller state fields and their subsequent processing. A privileged guest user may use this flaw to crash the QEMU process on the host resulting in DoS scenario.
A flaw was found in the IPv4 Resource Reservation Protocol (RSVP) classifier in the Linux kernel. The xprt pointer may go beyond the linear part of the skb, leading to an out-of-bounds read in the `rsvp_classify` function. This issue may allow a local user to crash the system and cause a denial of service.
hw/rdma/rdma_backend.c in QEMU allows guest OS users to trigger out-of-bounds access via a PvrdmaSqWqe ring element with a large num_sge value.
QEMU (aka Quick Emulator) built to use 'address_space_translate' to map an address to a MemoryRegionSection is vulnerable to an OOB r/w access issue. It could occur while doing pci_dma_read/write calls. Affects QEMU versions >= 1.6.0 and <= 2.3.1. A privileged user inside guest could use this flaw to crash the guest instance resulting in DoS.
In QEMU 3.1, scsi_handle_inquiry_reply in hw/scsi/scsi-generic.c allows out-of-bounds write and read operations.
In QEMU 4.1.0, an out-of-bounds read flaw was found in the ATI VGA implementation. It occurs in the ati_cursor_define() routine while handling MMIO write operations through the ati_mm_write() callback. A malicious guest could abuse this flaw to crash the QEMU process, resulting in a denial of service.
In Libarchive 3.4.0, archive_wstring_append_from_mbs in archive_string.c has an out-of-bounds read because of an incorrect mbrtowc or mbtowc call. For example, bsdtar crashes via a crafted archive.
The libevt_record_values_read_event() function in libevt_record_values.c in libevt before 2018-03-17 does not properly check for out-of-bounds values of user SID data size, strings size, or data size. NOTE: the vendor has disputed this as described in libyal/libevt issue 5 on GitHub
Quick Emulator (aka QEMU), when built with the Cirrus CLGD 54xx VGA Emulator support, allows local guest OS privileged users to cause a denial of service (out-of-bounds access and QEMU process crash) by leveraging incorrect region calculation when updating VGA display.
The vga_draw_text function in Qemu allows local OS guest privileged users to cause a denial of service (out-of-bounds read and QEMU process crash) by leveraging improper memory address validation.
The pnv_lpc_do_eccb function in hw/ppc/pnv_lpc.c in Qemu before 3.1 allows out-of-bounds write or read access to PowerNV memory.
In Qemu 3.0.0, lsi_do_msgin in hw/scsi/lsi53c895a.c allows out-of-bounds access by triggering an invalid msg_len value.
hw/display/cirrus_vga_rop.h in QEMU (aka Quick Emulator) allows local guest OS privileged users to cause a denial of service (out-of-bounds read and QEMU process crash) via vectors related to copying VGA data via the cirrus_bitblt_rop_fwd_transp_ and cirrus_bitblt_rop_fwd_ functions.
The cirrus_invalidate_region function in hw/display/cirrus_vga.c in Qemu allows local OS guest privileged users to cause a denial of service (out-of-bounds array access and QEMU process crash) via vectors related to negative pitch.
A memory leak in rsyslog before 5.7.6 was found in the way deamon processed log messages are logged when multiple rulesets were used and some output batches contained messages belonging to more than one ruleset. A local attacker could cause denial of the rsyslogd daemon service via a log message belonging to more than one ruleset
A DMA reentrancy issue leading to a use-after-free error was found in the e1000e NIC emulation code in QEMU. This issue could allow a privileged guest user to crash the QEMU process on the host, resulting in a denial of service.
A memory leak in rsyslog before 5.7.6 was found in the way deamon processed log messages were logged when multiple rulesets were used and some output batches contained messages belonging to more than one ruleset. A local attacker could cause denial of the rsyslogd daemon service via a log message belonging to more than one ruleset.
A PV guest could DoS Xen while unmapping a grant To address XSA-380, reference counting was introduced for grant mappings for the case where a PV guest would have the IOMMU enabled. PV guests can request two forms of mappings. When both are in use for any individual mapping, unmapping of such a mapping can be requested in two steps. The reference count for such a mapping would then mistakenly be decremented twice. Underflow of the counters gets detected, resulting in the triggering of a hypervisor bug check.
Improper invalidation for page table updates by a virtual guest operating system for multiple Intel(R) Processors may allow an authenticated user to potentially enable denial of service of the host system via local access.
A use after free vulnerability in ip_reass() in ip_input.c of libslirp 4.2.0 and prior releases allows crafted packets to cause a denial of service.
Infinite Loop in zziplib v0.13.69 allows remote attackers to cause a denial of service via the return value "zzip_file_read" in the function "unzzip_cat_file".
Buffer overflow in the util_path_encode function in udev/lib/libudev-util.c in udev before 1.4.1 allows local users to cause a denial of service (service outage) via vectors that trigger a call with crafted arguments.
In QEMU through 5.0.0, an assertion failure can occur in the network packet processing. This issue affects the e1000e and vmxnet3 network devices. A malicious guest user/process could use this flaw to abort the QEMU process on the host, resulting in a denial of service condition in net_tx_pkt_add_raw_fragment in hw/net/net_tx_pkt.c.
An issue was discovered in Xen through 4.13.x, allowing Arm guest OS users to cause a hypervisor crash because of a missing alignment check in VCPUOP_register_vcpu_info. The hypercall VCPUOP_register_vcpu_info is used by a guest to register a shared region with the hypervisor. The region will be mapped into Xen address space so it can be directly accessed. On Arm, the region is accessed with instructions that require a specific alignment. Unfortunately, there is no check that the address provided by the guest will be correctly aligned. As a result, a malicious guest could cause a hypervisor crash by passing a misaligned address. A malicious guest administrator may cause a hypervisor crash, resulting in a Denial of Service (DoS). All Xen versions are vulnerable. Only Arm systems are vulnerable. x86 systems are not affected.
In QEMU 4.2.0, a MemoryRegionOps object may lack read/write callback methods, leading to a NULL pointer dereference.
In the Linux kernel 4.4 through 5.7.6, usbtest_disconnect in drivers/usb/misc/usbtest.c has a memory leak, aka CID-28ebeb8db770.
An issue was discovered in Xen through 4.13.x, allowing x86 HVM guest OS users to cause a hypervisor crash. An inverted conditional in x86 HVM guests' dirty video RAM tracking code allows such guests to make Xen de-reference a pointer guaranteed to point at unmapped space. A malicious or buggy HVM guest may cause the hypervisor to crash, resulting in Denial of Service (DoS) affecting the entire host. Xen versions from 4.8 onwards are affected. Xen versions 4.7 and earlier are not affected. Only x86 systems are affected. Arm systems are not affected. Only x86 HVM guests using shadow paging can leverage the vulnerability. In addition, there needs to be an entity actively monitoring a guest's video frame buffer (typically for display purposes) in order for such a guest to be able to leverage the vulnerability. x86 PV guests, as well as x86 HVM guests using hardware assisted paging (HAP), cannot leverage the vulnerability.
An issue was discovered in OpenEXR before 2.5.2. Invalid input could cause a use-after-free in DeepScanLineInputFile::DeepScanLineInputFile() in IlmImf/ImfDeepScanLineInputFile.cpp.
QEMU 4.2.0 has a use-after-free in hw/net/e1000e_core.c because a guest OS user can trigger an e1000e packet with the data's address set to the e1000e's MMIO address.
An issue was discovered in OpenEXR before v2.5.2. Invalid chunkCount attributes could cause a heap buffer overflow in getChunkOffsetTableSize() in IlmImf/ImfMisc.cpp.
An issue was discovered in Xen through 4.13.x, allowing guest OS users to cause a host OS crash because of incorrect error handling in event-channel port allocation. The allocation of an event-channel port may fail for multiple reasons: (1) port is already in use, (2) the memory allocation failed, or (3) the port we try to allocate is higher than what is supported by the ABI (e.g., 2L or FIFO) used by the guest or the limit set by an administrator (max_event_channels in xl cfg). Due to the missing error checks, only (1) will be considered an error. All the other cases will provide a valid port and will result in a crash when trying to access the event channel. When the administrator configured a guest to allow more than 1023 event channels, that guest may be able to crash the host. When Xen is out-of-memory, allocation of new event channels will result in crashing the host rather than reporting an error. Xen versions 4.10 and later are affected. All architectures are affected. The default configuration, when guests are created with xl/libxl, is not vulnerable, because of the default event-channel limit.
QEMU (aka Quick Emulator), when built with the IDE disk and CD/DVD-ROM Emulator support, allows local guest OS privileged users to cause a denial of service (NULL pointer dereference and QEMU process crash) by flushing an empty CDROM device drive.
XRunSabre in sabre (aka xsabre) 0.2.4b relies on the ability to create /tmp/sabre.log, which allows local users to cause a denial of service (application unavailability) by creating a /tmp/sabre.log file that cannot be overwritten.
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
Stack-based buffer overflow in hw/usb/redirect.c in QEMU (aka Quick Emulator) allows local guest OS users to cause a denial of service (QEMU process crash) via vectors related to logging debug messages.
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction