Buffer overflow in the xmlrpc_char_encode function in modules/transport/xmlrpc/xmlrpclib.c in Atheme before 7.2.7 allows remote attackers to cause a denial of service via vectors related to XMLRPC response encoding.
libsixel 1.8.1 has a memory leak in sixel_decoder_decode in decoder.c, image_buffer_resize in fromsixel.c, and sixel_decode_raw in fromsixel.c.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-giop.c has a memory leak.
Memory leak in the Session Initiation Protocol (SIP) implementation in Cisco IOS 12.2 through 12.4, when VoIP is configured, allows remote attackers to cause a denial of service (memory consumption and voice-service outage) via unspecified valid SIP messages.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-pcp.c has a memory leak.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-multipart.c has a memory leak.
The IAX2 channel driver (chan_iax2) in Asterisk Open 1.2.x before 1.2.23, 1.4.x before 1.4.9, and Asterisk Appliance Developer Kit before 0.6.0, when configured to allow unauthenticated calls, allows remote attackers to cause a denial of service (resource exhaustion) via a flood of calls that do not complete a 3-way handshake, which causes an ast_channel to be allocated but not released.
An extension to hooks capabilities which debuted in Kea 1.4.0 introduced a memory leak for operators who are using certain hooks library facilities. In order to support multiple requests simultaneously, Kea 1.4 added a callout handle store but unfortunately the initial implementation of this store does not properly free memory in every case. Hooks which make use of query4 or query6 parameters in their callouts can leak memory, resulting in the eventual exhaustion of available memory and subsequent failure of the server process. Affects Kea DHCP 1.4.0.
Memory leak in Cisco IOS before 15.0(1)XA5 might allow remote attackers to cause a denial of service (memory consumption) by sending a crafted SIP REGISTER message over UDP, aka Bug ID CSCtg41733.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-isup.c has a memory leak.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-tn3270.c has a memory leak.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-lapd.c has a memory leak.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/oids.c has a memory leak.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-h223.c has a memory leak.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-smb2.c has a memory leak.
There is a memory leak triggered in the function dcinit of util/decompile.c in libming 0.4.8, which will lead to a denial of service attack.
Some Huawei products IPS Module V500R001C50; NGFW Module V500R001C50; V500R002C10; NIP6300 V500R001C50; NIP6600 V500R001C50; NIP6800 V500R001C50; Secospace USG6600 V500R001C50; USG9500 V500R001C50 have a memory leak vulnerability. The software does not release allocated memory properly when processing Protal questionnaire. A remote attacker could send a lot questionnaires to the device, successful exploit could cause the device to reboot since running out of memory.
On BIG-IP 13.1.0-13.1.0.7, a remote attacker using undisclosed methods against virtual servers configured with a Client SSL or Server SSL profile that has the SSL Forward Proxy feature enabled can force the Traffic Management Microkernel (tmm) to leak memory. As a result, system memory usage increases over time, which may eventually cause a decrease in performance or a system reboot due to memory exhaustion.
A failure to free memory can occur when processing messages having a specific combination of EDNS options. Versions affected are: BIND 9.10.7 -> 9.10.8-P1, 9.11.3 -> 9.11.5-P1, 9.12.0 -> 9.12.3-P1, and versions 9.10.7-S1 -> 9.11.5-S3 of BIND 9 Supported Preview Edition. Versions 9.13.0 -> 9.13.6 of the 9.13 development branch are also affected.
sav_parse_machine_integer_info_record in spss/readstat_sav_read.c in libreadstat.a in ReadStat 0.1.1 has a memory leak related to an iconv_open call.
The demangle_template function in cplus-dem.c in GNU libiberty, as distributed in GNU Binutils 2.31.1, has a memory leak via a crafted string, leading to a denial of service (memory consumption), as demonstrated by cxxfilt, a related issue to CVE-2018-12698.
In F5 BIG-IP LTM, AAM, AFM, Analytics, APM, ASM, DNS, GTM, Link Controller, PEM and WebSafe software version 13.0.0, a slow memory leak as a result of undisclosed IPv4 or IPv6 packets sent to BIG-IP management port or self IP addresses may lead to out of memory (OOM) conditions.
A denial of service vulnerability exists in Jenkins 2.137 and earlier, 2.121.2 and earlier in BasicAuthenticationFilter.java, BasicHeaderApiTokenAuthenticator.java that allows attackers to create ephemeral in-memory user records by attempting to log in using invalid credentials.
In Wireshark 2.6.0 to 2.6.3, the Steam IHS Discovery dissector could consume system memory. This was addressed in epan/dissectors/packet-steam-ihs-discovery.c by changing the memory-management approach.
In Bro through 2.5.5, there is a memory leak potentially leading to DoS in scripts/base/protocols/krb/main.bro in the Kerberos protocol parser.
An issue was discovered in libsvg2 through 2012-10-19. The svgGetNextPathField function in svg_string.c returns its input pointer in certain circumstances, which might result in a memory leak caused by wasteful malloc calls.
A flaw was found in the way civetweb frontend was handling requests for ceph RGW server with SSL enabled. An unauthenticated attacker could create multiple connections to ceph RADOS gateway to exhaust file descriptors for ceph-radosgw service resulting in a remote denial of service.
libsixel 1.8.1 has a memory leak in sixel_allocator_new in allocator.c.
An issue has been found in HTSlib 1.8. It is a memory leak in bgzf_getline in bgzf.c. NOTE: the software maintainer's position is that the "failure to free memory" can be fixed in applications that use the HTSlib library (such as test/test_bgzf.c in the original report) and is not a library issue
Google gperftools 2.7 has a memory leak in malloc_extension.cc, related to MallocExtension::Register and InitModule. NOTE: the software maintainer indicates that this is not a bug; it is only a false-positive report from the LeakSanitizer program
There is a memory leak in util/parser.c in libming 0.4.8, which will lead to a denial of service via parseSWF_DEFINEBUTTON2, parseSWF_DEFINEFONT, parseSWF_DEFINEFONTINFO, parseSWF_DEFINELOSSLESS, parseSWF_DEFINESPRITE, parseSWF_DEFINETEXT, parseSWF_DOACTION, parseSWF_FILLSTYLEARRAY, parseSWF_FRAMELABEL, parseSWF_LINESTYLEARRAY, parseSWF_PLACEOBJECT2, or parseSWF_SHAPEWITHSTYLE.
Missing Release of Resource after Effective Lifetime vulnerability in OpenSSL implementation of WAGO 750-831/xxx-xxx, 750-880/xxx-xxx, 750-881, 750-889 in versions FW4 up to FW15 allows an unauthenticated attacker to cause DoS on the device.
PowerDNS Authoritative Server 3.3.0 up to 4.1.4 excluding 4.1.5 and 4.0.6, and PowerDNS Recursor 3.2 up to 4.1.4 excluding 4.1.5 and 4.0.9, are vulnerable to a memory leak while parsing malformed records that can lead to remote denial of service.
A remote attacker via undisclosed measures, may be able to exploit an F5 BIG-IP APM 13.0.0-13.1.0.7 or 12.1.0-12.1.3.5 virtual server configured with an APM per-request policy object and cause a memory leak in the APM module.
Dave Gamble cJSON version 1.7.6 and earlier contains a CWE-772 vulnerability in cJSON library that can result in Denial of Service (DoS). This attack appear to be exploitable via If the attacker can force the data to be printed and the system is in low memory it can force a leak of memory. This vulnerability appears to have been fixed in 1.7.7.
TP-Link Archer C50 V3 devices before Build 200318 Rel. 62209 allows remote attackers to cause a denial of service via a crafted HTTP Header containing an unexpected Referer field.
Memory leak in the audio/audio.c in QEMU (aka Quick Emulator) allows remote attackers to cause a denial of service (memory consumption) by repeatedly starting and stopping audio capture.
In Eclipse Mosquitto 1.4.15 and earlier, a Memory Leak vulnerability was found within the Mosquitto Broker. Unauthenticated clients can send crafted CONNECT packets which could cause a denial of service in the Mosquitto Broker.
In TigerVNC 1.7.1 (SSecurityVeNCrypt.cxx SSecurityVeNCrypt::SSecurityVeNCrypt), an unauthenticated client can cause a small memory leak in the server.
In TigerVNC 1.7.1 (CConnection.cxx CConnection::CConnection), an unauthenticated client can cause a small memory leak in the server.
The SAP Message Server HTTP daemon in SAP KERNEL 7.21-7.49 allows remote attackers to cause a denial of service (memory consumption and process crash) via multiple msgserver/group?group= requests with a crafted size of the group parameter, aka SAP Security Note 2358972.
Memory leak in coders/mpc.c in ImageMagick before 6.9.7-4 and 7.x before 7.0.4-4 allows remote attackers to cause a denial of service (memory consumption) via vectors involving a pixel cache.
In Bftpd before 4.7, there is a memory leak in the file rename function.
LibTIFF 4.0.8 has multiple memory leak vulnerabilities, which allow attackers to cause a denial of service (memory consumption), as demonstrated by tif_open.c, tif_lzw.c, and tif_aux.c. NOTE: Third parties were unable to reproduce the issue
IKEv2 in Huawei IPS Module V500R001C00, V500R001C00SPC200, V500R001C00SPC300, V500R001C00SPC500, V500R001C00SPH303, V500R001C00SPH508, V500R001C20, V500R001C20SPC100, V500R001C20SPC100PWE, V500R001C20SPC200, V500R001C20SPC200B062, V500R001C20SPC200PWE, V500R001C20SPC300B078, V500R001C20SPC300PWE, NGFW Module V500R001C00, V500R001C00SPC200, V500R001C00SPC300, V500R001C00SPC500, V500R001C00SPC500PWE, V500R001C00SPH303, V500R001C00SPH508, V500R001C20, V500R001C20SPC100, V500R001C20SPC100PWE, V500R001C20SPC200, V500R001C20SPC200B062, V500R001C20SPC200PWE, V500R001C20SPC300B078, V500R001C20SPC300PWE, NIP6300 V500R001C00, V500R001C00SPC200, V500R001C00SPC300, V500R001C00SPC500, V500R001C00SPH303, V500R001C00SPH508, V500R001C20, V500R001C20SPC100, V500R001C20SPC100PWE, V500R001C20SPC200, V500R001C20SPC200B062, V500R001C20SPC200PWE, V500R001C20SPC300B078, V500R001C20SPC300PWE, NIP6600 V500R001C00, V500R001C00SPC200, V500R001C00SPC300, V500R001C00SPC500, V500R001C00SPH303, V500R001C00SPH508, V500R001C20, V500R001C20SPC100, V500R001C20SPC100PWE, V500R001C20SPC200, V500R001C20SPC200B062, V500R001C20SPC200PWE, V500R001C20SPC300B078, Secospace USG6300 V500R001C00, V500R001C00SPC200, V500R001C00SPC300, V500R001C00SPC500, V500R001C00SPC500PWE, V500R001C00SPH303, V500R001C00SPH508, V500R001C20, V500R001C20SPC100, V500R001C20SPC100PWE, V500R001C20SPC101, V500R001C20SPC200, V500R001C20SPC200B062, V500R001C20SPC200PWE, V500R001C20SPC300B078, V500R001C20SPC300PWE, Secospace USG6500 V500R001C00, V500R001C00SPC200, V500R001C00SPC300, V500R001C00SPC500, V500R001C00SPC500PWE, V500R001C00SPH303, V500R001C00SPH508, V500R001C20, V500R001C20SPC100, V500R001C20SPC100PWE, V500R001C20SPC101, V500R001C20SPC200, V500R001C20SPC200B062, V500R001C20SPC200PWE, V500R001C20SPC300B078, V500R001C20SPC300PWE, Secospace USG6600 V500R001C00, V500R001C00SPC100, V500R001C00SPC200, V500R001C00SPC300, V500R001C00SPC301, V500R001C00SPC500, V500R001C00SPC500PWE, V500R001C00SPH303, V500R001C20, V500R001C20SPC100, V500R001C20SPC100PWE, V500R001C20SPC101, V500R001C20SPC200, V500R001C20SPC200PWE, V500R001C20SPC300, V500R001C20SPC300B078, V500R001C20SPC300PWE, USG9500 V500R001C00, V500R001C00SPC200, V500R001C00SPC300, V500R001C00SPC303, V500R001C00SPC500, V500R001C00SPC500PWE, V500R001C00SPH303, V500R001C00SPH508, V500R001C20, V500R001C20SPC100, V500R001C20SPC100PWE, V500R001C20SPC101, V500R001C20SPC200, V500R001C20SPC200B062, V500R001C20SPC200PWE, V500R001C20SPC300B078, V500R001C20SPC300PWE has a memory leak vulnerability due to memory release failure resulted from insufficient input validation. An attacker could exploit it to cause memory leak, which may further lead to system exceptions.
Huawei CloudEngine 12800 V100R003C00, V100R005C00, V100R005C10, V100R006C00,CloudEngine 5800 V100R003C00, V100R005C00, V100R005C10, V100R006C00,CloudEngine 6800 V100R003C00, V100R005C00, V100R005C10, V100R006C00,CloudEngine 7800 V100R003C00, V100R005C00, V100R005C10, V100R006C00 have a memory leak vulnerability. An unauthenticated attacker may send specific Resource ReServation Protocol (RSVP) packets to the affected products. Due to not release the memory to handle the packets, successful exploit will result in memory leak of the affected products and lead to a DoS condition.
Qemu through 2.10.0 allows remote attackers to cause a memory leak by triggering slow data-channel read operations, related to io/channel-websock.c.
In Wireshark 2.4.0 to 2.4.1, the DOCSIS dissector could go into an infinite loop. This was addressed in plugins/docsis/packet-docsis.c by adding decrements.
Memory leak in dnsmasq before 2.78, when the --add-mac, --add-cpe-id or --add-subnet option is specified, allows remote attackers to cause a denial of service (memory consumption) via vectors involving DNS response creation.
In ImageMagick 7.0.6-1, a memory leak vulnerability was found in the function ReadWMFImage in coders/wmf.c, which allows attackers to cause a denial of service in CloneDrawInfo in draw.c.