A Denial of Service vulnerability exists in FFmpeg 4.2 due to a memory leak in the av_dict_set function in dict.c.
Buffer Overflow vulnerability exists in FFmpeg 4.2 in the config_input function at libavfilter/af_tremolo.c, which could let a remote malicious user cause a Denial of Service.
Buffer Overflow vulnerability in FFmpeg 4.2 in the build_diff_map function in libavfilter/vf_fieldmatch.c, which could let a remote malicious user cause a Denial of Service.
A Denial of Service vulnerability exists in FFmpeg 4.2 due to a memory leak in the ff_v4l2_m2m_create_context function in v4l2_m2m.c.
A Denial of Service vulnerability exists in FFmpeg 4.2 due to a memory leak in the url_open_dyn_buf_internal function in libavformat/aviobuf.c.
Buffer Overflow vulnerability in FFmpeg 4.2 at convolution_y_10bit in libavfilter/vf_vmafmotion.c, which could let a remote malicious user cause a Denial of Service.
A Denial of Service vulnerability exists in FFmpeg 4.2 due to a memory leak in the wtvfile_open_sector function in wtvdec.c.
A Denial of Service vulnerability exists in FFmpeg 4.2 idue to a memory leak in the v_frame_alloc function in frame.c.
Buffer Overflow vulnerability in FFmpeg 4.2 at the lagfun_frame16 function in libavfilter/vf_lagfun.c, which could let a remote malicious user cause Denial of Service.
A Denial of Service vulnerability exists in FFmpeg 4.2 due to a memory leak in avcodec_alloc_context3 at options.c.
The svq1_decode_frame function in the SVQ1 decoder (svq1dec.c) in libavcodec in FFmpeg 0.5.x before 0.5.7, 0.6.x before 0.6.4, 0.7.x before 0.7.9, and 0.8.x before 0.8.8; and in Libav 0.5.x before 0.5.6, 0.6.x before 0.6.4, and 0.7.x before 0.7.3 allows remote attackers to cause a denial of service (memory corruption) via a crafted SVQ1 stream, related to "dimensions changed."
A vulnerability was found in FFmpeg 2.0. It has been classified as problematic. Affected is the function dnxhd_init_rc of the file libavcodec/dnxhdenc.c. The manipulation leads to memory corruption. It is possible to launch the attack remotely. It is recommended to apply a patch to fix this issue.
A vulnerability, which was classified as problematic, was found in FFmpeg 2.0. This affects the function decode_vol_header of the file libavcodec/mpeg4videodec.c. The manipulation leads to memory corruption. It is possible to initiate the attack remotely. It is recommended to apply a patch to fix this issue.
A vulnerability was found in FFmpeg 2.0 and classified as problematic. This issue affects the function cmv_process_header. The manipulation leads to memory corruption. The attack may be initiated remotely. It is recommended to apply a patch to fix this issue.
A vulnerability has been found in FFmpeg 2.0 and classified as problematic. This vulnerability affects the function decode_hextile of the file libavcodec/vmnc.c. The manipulation leads to memory corruption. The attack can be initiated remotely. It is recommended to apply a patch to fix this issue.
A vulnerability was found in FFmpeg 2.0. It has been rated as problematic. This issue affects the function ff_init_buffer_info of the file utils.c. The manipulation leads to memory corruption. The attack may be initiated remotely. It is recommended to apply a patch to fix this issue.
A vulnerability classified as problematic was found in FFmpeg 2.0. Affected by this vulnerability is the function intra_pred of the file libavcodec/hevcpred_template.c. The manipulation leads to memory corruption. The attack can be launched remotely. It is recommended to apply a patch to fix this issue.
A vulnerability was found in FFmpeg 2.0. It has been rated as critical. Affected by this issue is the function decode_slice_header of the file libavcodec/h64.c. The manipulation leads to memory corruption. The attack may be launched remotely. It is recommended to apply a patch to fix this issue.
A vulnerability was found in FFmpeg 2.0. It has been declared as problematic. Affected by this vulnerability is the function truemotion1_decode_header of the component Truemotion1 Handler. The manipulation leads to memory corruption. The attack can be launched remotely. It is recommended to apply a patch to fix this issue.
A vulnerability classified as problematic has been found in FFmpeg 2.0. This affects the function decode_pulses. The manipulation leads to memory corruption. It is possible to initiate the attack remotely. It is recommended to apply a patch to fix this issue.
A vulnerability classified as problematic has been found in FFmpeg 2.0. This affects the function add_yblock of the file libavcodec/snow.h. The manipulation leads to memory corruption. It is possible to initiate the attack remotely. It is recommended to apply a patch to fix this issue.
Double free vulnerability in FFmpeg 3.3.4 and earlier allows remote attackers to cause a denial of service via a crafted AVI file.
libavformat/movenc.c in FFmpeg before 4.0.2 allows attackers to cause a denial of service (application crash caused by a divide-by-zero error) with a user crafted Waveform audio file.
A vulnerability, which was classified as problematic, has been found in FFmpeg 2.0. Affected by this issue is the function output_frame of the file libavcodec/h264.c. The manipulation leads to memory corruption. The attack may be launched remotely. It is recommended to apply a patch to fix this issue.
In FFmpeg 3.3.3, a DoS in asf_read_marker() due to lack of an EOF (End of File) check might cause huge CPU and memory consumption. When a crafted ASF file, which claims a large "name_len" or "count" field in the header but does not contain sufficient backing data, is provided, the loops over the name and markers would consume huge CPU and memory resources, since there is no EOF check inside these loops.
The kempf_decode_tile function in libavcodec/g2meet.c in FFmpeg before 2.0.1 allows remote attackers to cause a denial of service (out-of-bounds heap write) via a G2M4 encoded file.
The cdg_decode_frame function in cdgraphics.c in libavcodec in FFmpeg before 1.2.1 does not validate the presence of non-header data in a buffer, which allows remote attackers to cause a denial of service (out-of-bounds array access and application crash) via crafted CD Graphics Video data.
The process_frame_obj function in sanm.c in libavcodec in FFmpeg before 1.2.1 does not validate width and height values, which allows remote attackers to cause a denial of service (integer overflow, out-of-bounds array access, and application crash) via crafted LucasArts Smush video data.
The gif_decode_frame function in gifdec.c in libavcodec in FFmpeg before 1.2.1 does not properly manage the disposal methods of frames, which allows remote attackers to cause a denial of service (out-of-bounds array access and application crash) via crafted GIF data.
The mm_decode_inter function in mmvideo.c in libavcodec in FFmpeg before 1.2.1 does not validate the relationship between a horizontal coordinate and a width value, which allows remote attackers to cause a denial of service (out-of-bounds array access and application crash) via crafted American Laser Games (ALG) MM Video data.
FFmpeg 2.8 and 4.2.3 has a use-after-free via a crafted EXTINF duration in an m3u8 file because parse_playlist in libavformat/hls.c frees a pointer, and later that pointer is accessed in av_probe_input_format3 in libavformat/format.c.
The decode_init function in libavcodec/utvideodec.c in FFmpeg 2.8 through 3.4.2 allows remote attackers to cause a denial of service (Out of array read) via an AVI file with crafted dimensions within chroma subsampling data.
The gsm_parse function in libavcodec/gsm_parser.c in FFmpeg before 3.1.5 allows remote attackers to cause a denial of service (assert fault) via a crafted AVI file.
The decode_plane function in libavcodec/utvideodec.c in FFmpeg through 3.4.2 allows remote attackers to cause a denial of service (out of array read) via a crafted AVI file.
The ff_er_frame_end function in libavcodec/error_resilience.c in FFmpeg before 1.0.4 and 1.1.x before 1.1.1 does not properly verify that a frame is fully initialized, which allows remote attackers to trigger a NULL pointer dereference via crafted picture data.
The svg_probe function in libavformat/img2dec.c in FFmpeg through 3.4.2 allows remote attackers to cause a denial of service (Infinite Loop) via a crafted XML file.
The filter_slice function in libavfilter/vf_transpose.c in FFmpeg through 3.4.1 allows remote attackers to cause a denial of service (out-of-array access) via a crafted MP4 file.
The che_configure function in libavcodec/aacdec_template.c in FFmpeg before 3.2.1 allows remote attackers to cause a denial of service (allocation of huge memory, and being killed by the OS) via a crafted MOV file.
The avi_read_seek function in libavformat/avidec.c in FFmpeg before 3.1.4 allows remote attackers to cause a denial of service (assert fault) via a crafted AVI file.
The avi_read_nikon function in libavformat/avidec.c in FFmpeg before 3.1.4 is vulnerable to infinite loop when it decodes an AVI file that has a crafted 'nctg' structure.
track_header in libavformat/vividas.c in FFmpeg 4.3.1 has an out-of-bounds write because of incorrect extradata packing.
The jpeg2000_decode_tile function in libavcodec/jpeg2000dec.c in FFmpeg before 2.8.6 allows remote attackers to cause a denial of service (out-of-bounds array read access) via crafted JPEG 2000 data.
Mozilla Firefox before 48.0 and Firefox ESR 45.x before 45.3 on Linux make cairo _cairo_surface_get_extents calls that do not properly interact with libav header allocation in FFmpeg 0.10, which allows remote attackers to cause a denial of service (application crash) via a crafted video.
In libavformat/rmdec.c in FFmpeg 3.3.3, a DoS in ivr_read_header() due to lack of an EOF (End of File) check might cause huge CPU consumption. When a crafted IVR file, which claims a large "len" field in the header but does not contain sufficient backing data, is provided, the first type==4 loop would consume huge CPU resources, since there is no EOF check inside the loop.
In FFmpeg 3.3.3, a DoS in cine_read_header() due to lack of an EOF check might cause huge CPU and memory consumption. When a crafted CINE file, which claims a large "duration" field in the header but does not contain sufficient backing data, is provided, the image-offset parsing loop would consume huge CPU and memory resources, since there is no EOF check inside the loop.
FFmpeg before commit 9807d3976be0e92e4ece3b4b1701be894cd7c2e1 contains a CWE-835: Infinite loop vulnerability in pva format demuxer that can result in a Vulnerability that allows attackers to consume excessive amount of resources like CPU and RAM. This attack appear to be exploitable via specially crafted PVA file has to be provided as input. This vulnerability appears to have been fixed in 9807d3976be0e92e4ece3b4b1701be894cd7c2e1 and later.
FFmpeg 0.5 allows remote attackers to cause a denial of service (hang) via a crafted file that triggers an infinite loop.
In FFmpeg 3.2 and 4.1, a denial of service in the subtitle decoder allows attackers to hog the CPU via a crafted video file in Matroska format, because ff_htmlmarkup_to_ass in libavcodec/htmlsubtitles.c has a complex format argument to sscanf.
A denial of service in the subtitle decoder in FFmpeg 3.2 and 4.1 allows attackers to hog the CPU via a crafted video file in Matroska format, because handle_open_brace in libavcodec/htmlsubtitles.c has a complex format argument to sscanf.
The zlib_refill function in libavformat/swfdec.c in FFmpeg before 3.1.3 allows remote attackers to cause an infinite loop denial of service via a crafted SWF file.