ssl/s3_pkt.c in OpenSSL before 0.9.8i allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a DTLS ChangeCipherSpec packet that occurs before ClientHello.
A flaw was found in OpenLDAP in versions before 2.4.56. This flaw allows an attacker who sends a malicious packet processed by OpenLDAP to force a failed assertion in csnNormalize23(). The highest threat from this vulnerability is to system availability.
A flaw was found in OpenLDAP. This flaw allows an attacker who can send a malicious packet to be processed by OpenLDAP’s slapd server, to trigger an assertion failure. The highest threat from this vulnerability is to system availability.
A memory leak flaw was found in WildFly OpenSSL in versions prior to 1.1.3.Final, where it removes an HTTP session. It may allow the attacker to cause OOM leading to a denial of service. The highest threat from this vulnerability is to system availability.
A flaw was found in the way NSS handled CCS (ChangeCipherSpec) messages in TLS 1.3. This flaw allows a remote attacker to send multiple CCS messages, causing a denial of service for servers compiled with the NSS library. The highest threat from this vulnerability is to system availability. This flaw affects NSS versions before 3.58.
"deny-answer-aliases" is a little-used feature intended to help recursive server operators protect end users against DNS rebinding attacks, a potential method of circumventing the security model used by client browsers. However, a defect in this feature makes it easy, when the feature is in use, to experience an assertion failure in name.c. Affects BIND 9.7.0->9.8.8, 9.9.0->9.9.13, 9.10.0->9.10.8, 9.11.0->9.11.4, 9.12.0->9.12.2, 9.13.0->9.13.2.
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u181, 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: JAXP). Supported versions that are affected are Java SE: 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Concurrency). Supported versions that are affected are Java SE: 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, JRockit component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u171 and 7u161; JRockit: R28.3.16. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, JRockit. Note: This vulnerability can only be exploited by supplying data to APIs in the specified Component without using Untrusted Java Web Start applications or Untrusted Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
A heap double free issue was found in Opensc before version 0.22.0 in sc_pkcs15_free_tokeninfo.
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Libraries). Supported versions that are affected are Java SE: 6u171, 7u161, 8u152 and 9.0.1; Java SE Embedded: 8u151; JRockit: R28.3.16. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: JMX). Supported versions that are affected are Java SE: 6u181, 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
A flaw was found in the way HAProxy processed HTTP responses containing the "Set-Cookie2" header. This flaw could allow an attacker to send crafted HTTP response packets which lead to an infinite loop, eventually resulting in a denial of service condition. The highest threat from this vulnerability is availability.
Date.parse in the date gem through 3.2.0 for Ruby allows ReDoS (regular expression Denial of Service) via a long string. The fixed versions are 3.2.1, 3.1.2, 3.0.2, and 2.0.1.
An out-of-bounds read issue was discovered in the HTTP/2 protocol decoder in HAProxy 1.8.x and 1.9.x through 1.9.0 which can result in a crash. The processing of the PRIORITY flag in a HEADERS frame requires 5 extra bytes, and while these bytes are skipped, the total frame length was not re-checked to make sure they were present in the frame.
A flaw was found in libssh versions before 0.8.9 and before 0.9.4 in the way it handled AES-CTR (or DES ciphers if enabled) ciphers. The server or client could crash when the connection hasn't been fully initialized and the system tries to cleanup the ciphers when closing the connection. The biggest threat from this vulnerability is system availability.
An issue was discovered in dns.c in HAProxy through 1.8.14. In the case of a compressed pointer, a crafted packet can trigger infinite recursion by making the pointer point to itself, or create a long chain of valid pointers resulting in stack exhaustion.
dn2ancestor in the LDAP component in Fedora Directory Server 1.0 allows remote attackers to cause a denial of service (CPU and memory consumption) via a ModDN operation with a DN that contains a large number of "," (comma) characters, which results in a large amount of recursion, as demonstrated using the ProtoVer LDAP test suite.
Qemu has a Buffer Overflow in pcnet_receive in hw/net/pcnet.c because an incorrect integer data type is used.
In Apache HTTP server versions 2.4.37 and prior, by sending request bodies in a slow loris way to plain resources, the h2 stream for that request unnecessarily occupied a server thread cleaning up that incoming data. This affects only HTTP/2 (mod_http2) connections.
A flaw was found in the Linux kernel's NFS implementation, all versions 3.x and all versions 4.x up to 4.20. An attacker, who is able to mount an exported NFS filesystem, is able to trigger a null pointer dereference by using an invalid NFS sequence. This can panic the machine and deny access to the NFS server. Any outstanding disk writes to the NFS server will be lost.
A denial of service vulnerability was found in rsyslog in the imptcp module. An attacker could send a specially crafted message to the imptcp socket, which would cause rsyslog to crash. Versions before 8.27.0 are vulnerable.
libcurl versions from 7.36.0 to before 7.64.0 is vulnerable to a heap buffer out-of-bounds read. The function handling incoming NTLM type-2 messages (`lib/vauth/ntlm.c:ntlm_decode_type2_target`) does not validate incoming data correctly and is subject to an integer overflow vulnerability. Using that overflow, a malicious or broken NTLM server could trick libcurl to accept a bad length + offset combination that would lead to a buffer read out-of-bounds.
An issue was discovered in Open vSwitch (OvS) 2.7.x through 2.7.6, affecting ofproto_rule_insert__ in ofproto/ofproto.c. During bundle commit, flows that are added in a bundle are applied to ofproto in order. If a flow cannot be added (e.g., the flow action is a go-to for a group id that does not exist), OvS tries to revert back all previous flows that were successfully applied from the same bundle. This is possible since OvS maintains list of old flows that were replaced by flows from the bundle. While reinserting old flows, OvS has an assertion failure due to a check on rule state != RULE_INITIALIZED. This would work for new flows, but for an old flow the rule state is RULE_REMOVED. The assertion failure causes an OvS crash.
The SMB parser in tcpdump before 4.9.3 has buffer over-reads in print-smb.c:print_trans() for \MAILSLOT\BROWSE and \PIPE\LANMAN.
The HNCP parser in tcpdump before 4.9.3 has a buffer over-read in print-hncp.c:print_prefix().
The IEEE 802.11 parser in tcpdump before 4.9.3 has a buffer over-read in print-802_11.c for the Mesh Flags subfield.
The DCCP parser in tcpdump before 4.9.3 has a buffer over-read in print-dccp.c:dccp_print_option().
The BGP parser in tcpdump before 4.9.3 has a buffer over-read in print-bgp.c:bgp_attr_print() (MP_REACH_NLRI).
The ICMPv6 parser in tcpdump before 4.9.3 has a buffer over-read in print-icmp6.c.
The BGP parser in tcpdump before 4.9.3 has a buffer over-read in print-bgp.c:bgp_capabilities_print() (BGP_CAPCODE_RESTART).
The Babel parser in tcpdump before 4.9.3 has a buffer over-read in print-babel.c:babel_print_v2().
The ICMP parser in tcpdump before 4.9.3 has a buffer over-read in print-icmp.c:icmp_print().
A flaw in the java.math component in IBM SDK, Java Technology Edition 6.0, 7.0, and 8.0 may allow an attacker to inflict a denial-of-service attack with specially crafted String data. IBM X-Force ID: 141681.
A flaw was found in 389 Directory Server. A specially crafted search query could lead to excessive CPU consumption in the do_search() function. An unauthenticated attacker could use this flaw to provoke a denial of service.
The FRF.16 parser in tcpdump before 4.9.3 has a buffer over-read in print-fr.c:mfr_print().
Python's elementtree C accelerator failed to initialise Expat's hash salt during initialization. This could make it easy to conduct denial of service attacks against Expat by constructing an XML document that would cause pathological hash collisions in Expat's internal data structures, consuming large amounts CPU and RAM. The vulnerability exists in Python versions 3.7.0, 3.6.0 through 3.6.6, 3.5.0 through 3.5.6, 3.4.0 through 3.4.9, 2.7.0 through 2.7.15.
The IKEv1 parser in tcpdump before 4.9.3 has a buffer over-read in print-isakmp.c:ikev1_n_print().
The KAME racoon daemon in ipsec-tools before 0.5 allows remote attackers to cause a denial of service (crash) via malformed ISAKMP packets.
By specially crafting HTTP/2 requests, workers would be allocated 60 seconds longer than necessary, leading to worker exhaustion and a denial of service. Fixed in Apache HTTP Server 2.4.34 (Affected 2.4.18-2.4.30,2.4.33).
In all versions of Node.js prior to 6.14.4, 8.11.4 and 10.9.0 when used with UCS-2 encoding (recognized by Node.js under the names `'ucs2'`, `'ucs-2'`, `'utf16le'` and `'utf-16le'`), `Buffer#write()` can be abused to write outside of the bounds of a single `Buffer`. Writes that start from the second-to-last position of a buffer cause a miscalculation of the maximum length of the input bytes to be written.
python before versions 2.7.15, 3.4.9, 3.5.6rc1, 3.6.5rc1 and 3.7.0 is vulnerable to catastrophic backtracking in the difflib.IS_LINE_JUNK method. An attacker could use this flaw to cause denial of service.
libvirt version before 4.2.0-rc1 is vulnerable to a resource exhaustion as a result of an incomplete fix for CVE-2018-5748 that affects QEMU monitor but now also triggered via QEMU guest agent.
An out-of-bounds memory read flaw was found in the way 389-ds-base handled certain LDAP search filters, affecting all versions including 1.4.x. A remote, unauthenticated attacker could potentially use this flaw to make ns-slapd crash via a specially crafted LDAP request, thus resulting in denial of service.
A vulnerability was found in the way RemoteMessageChannel, introduced in jboss-remoting versions 3.3.10, reads from an empty buffer. An attacker could use this flaw to cause denial of service via high CPU caused by an infinite loop.
The ms_fnmatch function in Samba 3.0.4 and 3.0.7 and possibly other versions allows remote authenticated users to cause a denial of service (CPU consumption) via a SAMBA request that contains multiple * (wildcard) characters.
python before versions 2.7.15, 3.4.9, 3.5.6rc1, 3.6.5rc1 and 3.7.0 is vulnerable to catastrophic backtracking in pop3lib's apop() method. An attacker could use this flaw to cause denial of service.
Midnight commander (mc) 4.5.55 and earlier allows remote attackers to cause a denial of service via "use of already freed memory."
An uncontrolled resource consumption flaw has been discovered in redhat-certification in the way documents are loaded. A remote attacker may provide an existing but invalid XML file which would be opened and never closed, possibly producing a Denial of Service.