A vulnerability in the VLAN Trunking Protocol (VTP) subsystem of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to corrupt the internal VTP database on an affected device and cause a denial of service (DoS) condition. The vulnerability is due to a logic error in how the affected software handles a subset of VTP packets. An attacker could exploit this vulnerability by sending VTP packets in a sequence that triggers a timeout in the VTP message processing code of the affected software. A successful exploit could allow the attacker to impact the ability to create, modify, or delete VLANs and cause a DoS condition. There are workarounds that address this vulnerability. This vulnerability affects Cisco devices that are running a vulnerable release of Cisco IOS Software or Cisco IOS XE Software, are operating in VTP client mode or VTP server mode, and do not have a VTP domain name configured. The default configuration for Cisco devices that are running Cisco IOS Software or Cisco IOS XE Software and support VTP is to operate in VTP server mode with no domain name configured.
A vulnerability in the Protocol Independent Multicast (PIM) feature of Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient input validation. An attacker could exploit this vulnerability by sending a crafted PIM packet to an affected device. A successful exploit could allow the attacker to cause a traffic loop, resulting in a DoS condition.
A vulnerability in the handling of IEEE 802.11w Protected Management Frames (PMFs) of Cisco Catalyst 9800 Series Wireless Controllers that are running Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to terminate a valid user connection to an affected device. The vulnerability exists because the affected software does not properly validate 802.11w disassociation and deauthentication PMFs that it receives. An attacker could exploit this vulnerability by sending a spoofed 802.11w PMF from a valid, authenticated client on a network adjacent to an affected device. A successful exploit could allow the attacker to terminate a single valid user connection to the affected device.
A vulnerability in the internal packet processing of Cisco Aironet Series Access Points (APs) could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected AP if the switch interface where the AP is connected has port security configured. The vulnerability exists because the AP forwards some malformed wireless client packets outside of the Control and Provisioning of Wireless Access Points (CAPWAP) tunnel. An attacker could exploit this vulnerability by sending crafted wireless packets to an affected AP. A successful exploit could allow the attacker to trigger a security violation on the adjacent switch port, which could result in a DoS condition. Note: Though the Common Vulnerability Scoring System (CVSS) score corresponds to a High Security Impact Rating (SIR), this vulnerability is considered Medium because a workaround is available and exploitation requires a specific switch configuration. There are workarounds that address this vulnerability.
A vulnerability in the Open Shortest Path First (OSPF) implementation of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, adjacent attacker to cause a reload of an affected device, resulting in a denial of service (DoS) condition. The vulnerability exists because the affected software improperly parses certain options in OSPF link-state advertisement (LSA) type 11 packets. An attacker could exploit this vulnerability by sending a crafted LSA type 11 OSPF packet to an affected device. A successful exploit could allow the attacker to cause a reload of the affected device, resulting in a DoS condition for client traffic that is traversing the device.
A vulnerability in the IPv6 protocol handling of the management interfaces of Cisco IOS XR Software could allow an unauthenticated, adjacent attacker to cause an IPv6 flood on the management interface network of an affected device. The vulnerability exists because the software incorrectly forwards IPv6 packets that have an IPv6 node-local multicast group address destination and are received on the management interfaces. An attacker could exploit this vulnerability by connecting to the same network as the management interfaces and injecting IPv6 packets that have an IPv6 node-local multicast group address destination. A successful exploit could allow the attacker to cause an IPv6 flood on the corresponding network. Depending on the number of Cisco IOS XR Software nodes on that network segment, exploitation could cause excessive network traffic, resulting in network degradation or a denial of service (DoS) condition.
A vulnerability in the DHCP service of Cisco Industrial Network Director could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition. The vulnerability is due to improper handling of DHCP lease requests. An attacker could exploit this vulnerability by sending malicious DHCP lease requests to an affected application. A successful exploit could allow the attacker to cause the DHCP service to terminate, resulting in a DoS condition.
A vulnerability in the Fibre Channel over Ethernet (FCoE) protocol implementation in Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition when an FCoE-related process unexpectedly reloads. This vulnerability affects Cisco NX-OS Software on the following Cisco devices when they are configured for FCoE: Multilayer Director Switches, Nexus 7000 Series Switches, Nexus 7700 Series Switches. More Information: CSCvc91729. Known Affected Releases: 8.3(0)CV(0.833). Known Fixed Releases: 8.3(0)ISH(0.62) 8.3(0)CV(0.944) 8.1(1) 8.1(0.8)S0 7.3(2)D1(0.47).
A vulnerability in IPv6 traffic processing of Cisco IOS XE Wireless Controller Software for Cisco Catalyst 9000 Family Wireless Controllers could allow an unauthenticated, adjacent attacker to cause a Layer 2 (L2) loop in a configured VLAN, resulting in a denial of service (DoS) condition for that VLAN. The vulnerability is due to a logic error when processing specific link-local IPv6 traffic. An attacker could exploit this vulnerability by sending a crafted IPv6 packet that would flow inbound through the wired interface of an affected device. A successful exploit could allow the attacker to cause traffic drops in the affected VLAN, thus triggering the DoS condition.
A Denial of Service Vulnerability in 802.11 ingress packet processing of the Cisco Mobility Express 2800 and 3800 Access Points (APs) could allow an unauthenticated, adjacent attacker to cause the connection table to be full of invalid connections and be unable to process new incoming requests. More Information: CSCvb66659. Known Affected Releases: 8.2(130.0). Known Fixed Releases: 8.2(131.10) 8.2(131.6) 8.2(141.0) 8.3(104.56) 8.4(1.88) 8.4(1.91).
Multiple vulnerabilities in the Server Message Block (SMB) Protocol preprocessor detection engine for Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, adjacent or remote attacker to cause a denial of service (DoS) condition. For more information about these vulnerabilities, see the Details section of this advisory.
Multiple vulnerabilities in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Video Surveillance 7000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. These vulnerabilities are due to incorrect processing of certain LLDP packets at ingress time. An attacker could exploit these vulnerabilities by sending crafted LLDP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DoS condition. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
A vulnerability in the multicast DNS (mDNS) gateway feature of Cisco Aironet Series Access Points Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient input validation of incoming mDNS traffic. An attacker could exploit this vulnerability by sending a crafted mDNS packet to an affected device through a wireless network that is configured in FlexConnect local switching mode or through a wired network on a configured mDNS VLAN. A successful exploit could allow the attacker to cause the access point (AP) to reboot, resulting in a DoS condition.
A vulnerability in the Layer 2 punt code of Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to cause a queue wedge on an interface that receives specific Layer 2 frames, resulting in a denial of service (DoS) condition. This vulnerability is due to improper handling of certain Layer 2 frames. An attacker could exploit this vulnerability by sending specific Layer 2 frames on the segment the router is connected to. A successful exploit could allow the attacker to cause a queue wedge on the interface, resulting in a DoS condition.
Multiple vulnerabilities in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Video Surveillance 7000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. These vulnerabilities are due to incorrect processing of certain LLDP packets at ingress time. An attacker could exploit these vulnerabilities by sending crafted LLDP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DoS condition. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
Multiple vulnerabilities in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Video Surveillance 7000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. These vulnerabilities are due to incorrect processing of certain LLDP packets at ingress time. An attacker could exploit these vulnerabilities by sending crafted LLDP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DoS condition. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
Multiple vulnerabilities in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Video Surveillance 7000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. These vulnerabilities are due to incorrect processing of certain LLDP packets at ingress time. An attacker could exploit these vulnerabilities by sending crafted LLDP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DoS condition. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
A vulnerability in the Cisco Discovery Protocol implementation for Cisco Video Surveillance 8000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause an affected IP camera to reload. The vulnerability is due to missing checks when Cisco Discovery Protocol messages are processed. An attacker could exploit this vulnerability by sending a malicious Cisco Discovery Protocol packet to an affected IP camera. A successful exploit could allow the attacker to cause the affected IP camera to reload unexpectedly, resulting in a denial of service (DoS) condition. Note: Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
A vulnerability in the Cisco IOS Software forwarding queue of Cisco 2960X and 3750X switches could allow an unauthenticated, adjacent attacker to cause a memory leak in the software forwarding queue that would eventually lead to a partial denial of service (DoS) condition. More Information: CSCva72252. Known Affected Releases: 15.2(2)E3 15.2(4)E1. Known Fixed Releases: 15.2(2)E6 15.2(4)E3 15.2(5)E1 15.2(5.3.28i)E1 15.2(6.0.49i)E 3.9(1)E.
A vulnerability in Cisco Aironet Series Access Points Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to the improper processing of client packets that are sent to an affected access point (AP). An attacker could exploit this vulnerability by sending a large number of sustained client packets to the affected AP. A successful exploit could allow the attacker to cause the affected AP to crash, resulting in a DoS condition.
A Denial of Service Vulnerability in 802.11 ingress connection authentication handling for the Cisco Mobility Express 2800 and 3800 Access Points (APs) could allow an unauthenticated, adjacent attacker to cause authentication to fail. Affected Products: This vulnerability affects Cisco Mobility Express 2800 Series and 3800 Series Access Points when configured in local mode in 40 MHz. More Information: CSCvb33575. Known Affected Releases: 8.2(121.12) 8.4(1.82). Known Fixed Releases: 8.2(131.2) 8.2(131.3) 8.2(131.4) 8.2(141.0) 8.3(104.53) 8.3(104.54) 8.4(1.80) 8.4(1.85).
A vulnerability in Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on the control plane of an affected device. This vulnerability is due to improper handling of frames with VLAN tag information. An attacker could exploit this vulnerability by sending crafted frames to an affected device. A successful exploit could allow the attacker to render the control plane of the affected device unresponsive. The device would not be accessible through the console or CLI, and it would not respond to ping requests, SNMP requests, or requests from other control plane protocols. Traffic that is traversing the device through the data plane is not affected. A reload of the device is required to restore control plane services.
A vulnerability in the CDP processing feature of Cisco ISE could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition of the CDP process on an affected device. This vulnerability is due to insufficient bounds checking when an affected device processes CDP traffic. An attacker could exploit this vulnerability by sending crafted CDP traffic to the device. A successful exploit could cause the CDP process to crash, impacting neighbor discovery and the ability of Cisco ISE to determine the reachability of remote devices. After a crash, the CDP process must be manually restarted using the cdp enable command in interface configuration mode.
A vulnerability in Cisco IOS XE Software running on Cisco cBR Series Converged Broadband Routers could allow an unauthenticated, adjacent attacker to cause high CPU usage on an affected device, resulting in a denial of service (DoS) condition. The vulnerability is due to the incorrect handling of certain DHCP packets. An attacker could exploit this vulnerability by sending certain DHCP packets to a specific segment of an affected device. A successful exploit could allow the attacker to increase CPU usage on the affected device and cause a DoS condition. Cisco Bug IDs: CSCvg73687.
A vulnerability in the Virtual Private LAN Service (VPLS) code of Cisco IOS 15.0 through 15.4 for Cisco Catalyst 6800 Series Switches could allow an unauthenticated, adjacent attacker to cause a C6800-16P10G or C6800-16P10G-XL type line card to crash, resulting in a denial of service (DoS) condition. The vulnerability is due to a memory management issue in the affected software. An attacker could exploit this vulnerability by creating a large number of VPLS-generated MAC entries in the MAC address table of an affected device. A successful exploit could allow the attacker to cause a C6800-16P10G or C6800-16P10G-XL type line card to crash, resulting in a DoS condition. This vulnerability affects Cisco Catalyst 6800 Series Switches that are running a vulnerable release of Cisco IOS Software and have a Cisco C6800-16P10G or C6800-16P10G-XL line card in use with Supervisor Engine 6T. To be vulnerable, the device must also be configured with VPLS and the C6800-16P10G or C6800-16P10G-XL line card needs to be the core-facing MPLS interfaces. Cisco Bug IDs: CSCva61927.
A vulnerability in the Cisco Discovery Protocol service of Cisco FXOS Software and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause the service to restart, resulting in a denial of service (DoS) condition. This vulnerability is due to improper handling of Cisco Discovery Protocol messages that are processed by the Cisco Discovery Protocol service. An attacker could exploit this vulnerability by sending a series of malicious Cisco Discovery Protocol messages to an affected device. A successful exploit could allow the attacker to cause the Cisco Discovery Protocol service to fail and restart. In rare conditions, repeated failures of the process could occur, which could cause the entire device to restart.
A vulnerability in the Cisco Discovery Protocol implementation for Cisco IOS XR Software could allow an unauthenticated, adjacent attacker to cause the Cisco Discovery Protocol process to reload on an affected device. This vulnerability is due to a heap buffer overflow in certain Cisco Discovery Protocol messages. An attacker could exploit this vulnerability by sending a malicious Cisco Discovery Protocol packet to an affected device. A successful exploit could allow the attacker to cause a heap overflow, which could cause the Cisco Discovery Protocol process to reload on the device. The bytes that can be written in the buffer overflow are restricted, which limits remote code execution.Note: Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). Cisco has released software updates that address this vulnerability. There are no workarounds that address this vulnerability.This advisory is part of the September 2022 release of the Cisco IOS XR Software Security Advisory Bundled Publication. For a complete list of the advisories and links to them, see .
Multiple vulnerabilities in Cisco SD-WAN vManage Software could allow an unauthenticated, remote attacker to execute arbitrary code or gain access to sensitive information, or allow an authenticated, local attacker to gain escalated privileges or gain unauthorized access to the application. For more information about these vulnerabilities, see the Details section of this advisory.
Multiple vulnerabilities in the Cisco Discovery Protocol implementation for Cisco Video Surveillance 8000 Series IP Cameras could allow an unauthenticated, adjacent attacker to execute code remotely or cause a reload of an affected IP camera. These vulnerabilities are due to missing checks when the IP cameras process a Cisco Discovery Protocol packet. An attacker could exploit these vulnerabilities by sending a malicious Cisco Discovery Protocol packet to the targeted IP camera. A successful exploit could allow the attacker to execute code on the affected IP camera or cause it to reload unexpectedly, resulting in a denial of service (DoS) condition. Note: Cisco Discovery Protocol is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
A vulnerability in the CLI of Cisco IOS XE Software could allow an authenticated, local attacker with privilege level 15 to elevate privileges to root on the underlying operating system of an affected device. This vulnerability is due to insufficient input validation when processing specific configuration commands. An attacker could exploit this vulnerability by including crafted input in specific configuration commands. A successful exploit could allow the attacker to elevate privileges to root on the underlying operating system of an affected device. The security impact rating (SIR) of this advisory has been raised to High because an attacker could gain access to the underlying operating system of the affected device and perform potentially undetected actions. Note: The attacker must have privileges to enter configuration mode on the affected device. This is usually referred to as privilege level 15.
Cisco Universal Broadband (aka uBR) 10000 series routers, when an IPv4/IPv6 dual-stack modem is used, allow remote attackers to cause a denial of service (routing-engine reload) via unspecified changes to IP address assignments, aka Bug ID CSCue15313.
A vulnerability in a policy-based Cisco Application Visibility and Control (AVC) implementation of Cisco AsyncOS Software for Cisco Secure Web Appliance could allow an unauthenticated, remote attacker to evade the antivirus scanner and download a malicious file onto an endpoint. The vulnerability is due to improper handling of a crafted range request header. An attacker could exploit this vulnerability by sending an HTTP request with a crafted range request header through the affected device. A successful exploit could allow the attacker to evade the antivirus scanner and download malware onto the endpoint without detection by Cisco Secure Web Appliance.
A vulnerability in the web-based management interface of Cisco AsyncOS Software for Cisco Secure Email Gateway and Cisco Secure Web Appliance could allow an authenticated, remote attacker to perform command injection attacks against an affected device. The attacker must authenticate with valid administrator credentials. This vulnerability is due to insufficient validation of XML configuration files by an affected device. An attacker could exploit this vulnerability by uploading a crafted XML configuration file. A successful exploit could allow the attacker to inject commands to the underlying operating system with root privileges.
A vulnerability in the Two-Way Active Measurement Protocol (TWAMP) server feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause the affected device to reload, resulting in a denial of service (DoS) condition. For Cisco IOS XR Software, this vulnerability could cause the ipsla_ippm_server process to reload unexpectedly if debugs are enabled. This vulnerability is due to out-of-bounds array access when processing specially crafted TWAMP control packets. An attacker could exploit this vulnerability by sending crafted TWAMP control packets to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. Note: For Cisco IOS XR Software, only the ipsla_ippm_server process reloads unexpectedly and only when debugs are enabled. The vulnerability details for Cisco IOS XR Software are as follows: Security Impact Rating (SIR): Low CVSS Base Score: 3.7 CVSS Vector: CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L
A vulnerability in the Spam Quarantine feature of Cisco AsyncOS Software for Cisco Secure Email Gateway and Cisco Secure Email and Web Manager could allow an unauthenticated, remote attacker to execute arbitrary system commands on an affected device with root privileges. This vulnerability is due to insufficient validation of HTTP requests by the Spam Quarantine feature. An attacker could exploit this vulnerability by sending a crafted HTTP request to the affected device. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with root privileges.
The web service framework in Cisco WAAS Software 4.x and 5.x before 5.0.3e, 5.1.x before 5.1.1c, and 5.2.x before 5.2.1 in a Central Manager (CM) configuration allows remote attackers to execute arbitrary code via a crafted POST request, aka Bug ID CSCuh26626.
Open redirect vulnerability in the help page in Cisco Video Surveillance Operations Manager allows remote attackers to redirect users to arbitrary web sites and conduct phishing attacks via a crafted URL, aka Bug ID CSCty74490.
The license-installation module in Cisco NX-OS on Nexus 1000V devices allows local users to execute arbitrary commands via crafted "install license" arguments, aka Bug ID CSCuh30824.
Cisco TelePresence TC Software before 6.1 and TE Software before 4.1.3 allow remote attackers to cause a denial of service (temporary device hang) via crafted SIP packets, aka Bug ID CSCuf89557.
The Cisco Security Service in Cisco AnyConnect Secure Mobility Client (aka AnyConnect VPN Client) does not properly verify files, which allows local users to gain privileges via unspecified vectors, aka Bug ID CSCud14153.
A vulnerability in the web-based UI of Cisco HyperFlex HX Data Platform Software could allow an unauthenticated, remote attacker to access sensitive information on an affected system. The vulnerability is due to a lack of proper input and authorization of HTTP requests. An attacker could exploit this vulnerability by sending a malicious HTTP request to the web-based UI of an affected system. A successful exploit could allow the attacker to access files that may contain sensitive data.
A vulnerability in the Cisco Webex Network Recording Player for Microsoft Windows and the Cisco Webex Player for Microsoft Windows could allow an attacker to execute arbitrary code on an affected system. The vulnerability exist because the affected software improperly validates Advanced Recording Format (ARF) and Webex Recording Format (WRF) files. An attacker could exploit this vulnerability by sending a user a malicious ARF or WRF file via a link or an email attachment and persuading the user to open the file by using the affected software. A successful exploit could allow the attacker to execute arbitrary code on the affected system.
A vulnerability in the implementation of Border Gateway Protocol (BGP) functionality in Cisco IOS XR Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition. The vulnerability is due to incorrect processing of certain BGP update messages. An attacker could exploit this vulnerability by sending BGP update messages that include a specific, malformed attribute to be processed by an affected system. A successful exploit could allow the attacker to cause the BGP process to restart unexpectedly, resulting in a DoS condition. The Cisco implementation of BGP accepts incoming BGP traffic only from explicitly defined peers. To exploit this vulnerability, the malicious BGP update message would need to come from a configured, valid BGP peer, or would need to be injected by the attacker into the victim's BGP network on an existing, valid TCP connection to a BGP peer.
The Next-Generation Firewall (aka NGFW, formerly CX Context-Aware Security) module 9.x before 9.1.1.9 and 9.1.2.x before 9.1.2.12 for Cisco Adaptive Security Appliances (ASA) devices allows remote attackers to cause a denial of service (device reload or traffic-processing outage) via fragmented (1) IPv4 or (2) IPv6 traffic, aka Bug ID CSCue88387.
A vulnerability in the Cisco Webex Network Recording Player for Microsoft Windows and the Cisco Webex Player for Microsoft Windows could allow an attacker to execute arbitrary code on an affected system. The vulnerability exist because the affected software improperly validates Advanced Recording Format (ARF) and Webex Recording Format (WRF) files. An attacker could exploit this vulnerability by sending a user a malicious ARF or WRF file via a link or an email attachment and persuading the user to open the file by using the affected software. A successful exploit could allow the attacker to execute arbitrary code on the affected system.
The Precision Video Engine component in Cisco Jabber for Windows and Cisco Virtualization Experience Media Engine allows remote attackers to cause a denial of service (process crash and call disconnection) via crafted RTP packets, aka Bug IDs CSCuh60706 and CSCue21117.
The Cisco Unified IP Phone 8945 with software 9.3(2) allows remote attackers to cause a denial of service (device hang) via a malformed PNG file, aka Bug ID CSCud04270.
Apache Log4j2 versions 2.0-beta7 through 2.17.0 (excluding security fix releases 2.3.2 and 2.12.4) are vulnerable to a remote code execution (RCE) attack when a configuration uses a JDBC Appender with a JNDI LDAP data source URI when an attacker has control of the target LDAP server. This issue is fixed by limiting JNDI data source names to the java protocol in Log4j2 versions 2.17.1, 2.12.4, and 2.3.2.
A vulnerability in the Cisco Webex Network Recording Player for Microsoft Windows and the Cisco Webex Player for Microsoft Windows could allow an attacker to execute arbitrary code on an affected system. The vulnerability exist because the affected software improperly validates Advanced Recording Format (ARF) and Webex Recording Format (WRF) files. An attacker could exploit this vulnerability by sending a user a malicious ARF or WRF file via a link or an email attachment and persuading the user to open the file by using the affected software. A successful exploit could allow the attacker to execute arbitrary code on the affected system.
The "Files Available for Download" implementation in the Cisco Intelligent Automation for Cloud component in Cisco Services Portal 9.4(1) allows remote authenticated users to read arbitrary files via a crafted request, aka Bug ID CSCug65687.