The Windows Hyper-V component on Microsoft Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allows an information disclosure vulnerability when it fails to properly validate input from an authenticated user on a guest operating system, aka "Hyper-V Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-8707, CVE-2017-8711, CVE-2017-8712, and CVE-2017-8713.
The Windows Hyper-V component on Microsoft Windows 10 1607 and Windows Server 2016 allows an information disclosure vulnerability when it fails to properly validate input from an authenticated user on a guest operating system, aka "Hyper-V Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-8707, CVE-2017-8706, CVE-2017-8712, and CVE-2017-8713.
Microsoft Windows 7 SP1, Windows Server 2008 SP2 and R2 SP1, and Windows Server 2012 allow an authenticated attacker to run a specially crafted application when the Windows kernel improperly initializes objects in memory, aka "Win32k Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-8470, CVE-2017-8471, CVE-2017-8473, CVE-2017-8475, CVE-2017-8477, and CVE-2017-8484.
Microsoft Windows 7 SP1, Windows Server 2008 SP2 and R2 SP1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allow an authenticated attacker to run a specially crafted application when the Windows kernel improperly initializes objects in memory, aka "Win32k Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-8470, CVE-2017-8471, CVE-2017-8472, CVE-2017-8473, CVE-2017-8477, and CVE-2017-8484.
The Windows Hyper-V component on Microsoft Windows Windows 8.1, Windows Server 2012 Gold and R2, Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allows an information disclosure vulnerability when it fails to properly validate input from an authenticated user on a guest operating system, aka "Hyper-V Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-8707, CVE-2017-8711, CVE-2017-8712, and CVE-2017-8706.
Microsoft Windows 7 SP1, Windows Server 2008 SP2 and R2 SP1, Windows 8.1 and Windows RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allow an authenticated attacker to run a specially crafted application when the Windows kernel improperly initializes objects in memory, aka "Win32k Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-8470, CVE-2017-8471, CVE-2017-8472, CVE-2017-8473, CVE-2017-8475, and CVE-2017-8477.
The kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows an authenticated attacker to obtain information via a specially crafted application. aka "Windows Kernel Information Disclosure Vulnerability," a different vulnerability than CVE-2017-8491, CVE-2017-8490, CVE-2017-8489, CVE-2017-8488, CVE-2017-8485, CVE-2017-8483, CVE-2017-8482, CVE-2017-8480, CVE-2017-8479, CVE-2017-8478, CVE-2017-8476, CVE-2017-8474, CVE-2017-8469, CVE-2017-8462, CVE-2017-0300, CVE-2017-0299, and CVE-2017-0297.
The Windows Hyper-V component on Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allows an information disclosure vulnerability when it fails to properly validate input from an authenticated user on a guest operating system, aka Hyper-V Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-8706, CVE-2017-8711, CVE-2017-8712, and CVE-2017-8713.
Pulse Secure Desktop Client 9.0Rx before 9.0R5 and 9.1Rx before 9.1R4 on Windows reveals users' passwords if Save Settings is enabled.
An information disclosure vulnerability exists in the Windows kernel that could allow an attacker to retrieve information that could lead to a Kernel Address Space Layout Randomization (ASLR) bypass. An attacker who successfully exploited the vulnerability could retrieve the memory address of a kernel object. To exploit the vulnerability, an attacker would have to log on to an affected system and run a specially crafted application. The security update addresses the vulnerability by correcting how the Windows kernel handles memory addresses.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, 11.1, and 11.5 could allow a local user to obtain sensitive information using a race condition of a symbolic link. IBM X-Force ID: 179269.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, 11.1, and 11.5 could allow a local user to obtain sensitive information using a race condition of a symbolic link. IBM X-Force ID: 179268.
SAP Download Manager 2.1.142 and earlier generates an encryption key from a small key space on Windows and Mac systems, which allows context-dependent attackers to obtain sensitive configuration information by leveraging knowledge of a hardcoded key in the program code and a computer BIOS serial number, aka SAP Security Note 2282338.
The Windows kernel in Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2008 SP2 and R2 SP1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703 and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to how objects in memory are handled, aka "Windows Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0829 and CVE-2018-0832.
An information exposure through log file vulnerability exists in the Palo Alto Networks GlobalProtect app on Windows that logs the cleartext credentials of the connecting GlobalProtect user when authenticating using Connect Before Logon feature. This issue impacts GlobalProtect App 5.2 versions earlier than 5.2.9 on Windows. This issue does not affect the GlobalProtect app on other platforms.
The kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows an authenticated attacker to obtain information via a specially crafted application. aka "Windows Kernel Information Disclosure Vulnerability," a different vulnerability than CVE-2017-8492, CVE-2017-8490, CVE-2017-8489, CVE-2017-8488, CVE-2017-8485, CVE-2017-8483, CVE-2017-8482, CVE-2017-8480, CVE-2017-8479, CVE-2017-8478, CVE-2017-8476, CVE-2017-8474, CVE-2017-8469, CVE-2017-8462, CVE-2017-0300, CVE-2017-0299, and CVE-2017-0297.
Azure RTOS Information Disclosure Vulnerability
The kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows an authenticated attacker to obtain information via a specially crafted application. aka "Windows Kernel Information Disclosure Vulnerability," a different vulnerability than CVE-2017-8492, CVE-2017-8491, CVE-2017-8490, CVE-2017-8489, CVE-2017-8485, CVE-2017-8483, CVE-2017-8482, CVE-2017-8480, CVE-2017-8479, CVE-2017-8478, CVE-2017-8476, CVE-2017-8474, CVE-2017-8469, CVE-2017-8462, CVE-2017-0300, CVE-2017-0299, and CVE-2017-0297.
The Windows kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows authenticated attackers to obtain sensitive information via a specially crafted document, aka "Windows Kernel Information Disclosure Vulnerability," a different vulnerability than CVE-2017-0175, CVE-2017-0220, and CVE-2017-0259.
Uniscribe in Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, 1703, Windows Server 2016, Microsoft Office 2007 SP3, and Microsoft Office 2010 SP2 allows improper disclosure of memory contents, aka "Windows Uniscribe Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-0284, CVE-2017-0285, and CVE-2017-8534.
The graphics component in Microsoft Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows an authenticated attacker to run arbitrary code in kernel mode via a specially crafted application, aka "Microsoft Graphics Component Elevation of Privilege Vulnerability."
NVIDIA GPU Display Driver contains a vulnerability in the kernel mode layer handler where an incorrect initialization of internal objects can cause an infinite loop which may lead to a denial of service.
Adobe Photoshop versions 21.2.9 (and earlier) and 22.4.2 (and earlier) are affected by an Improper input validation vulnerability when parsing a specially crafted file. An unauthenticated attacker could leverage this vulnerability to disclose arbitrary memory information in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Improper initialization in some Intel(R) Power Gadget software for Windwos all versions may allow an authenticated user to potentially enable denial of service via local access.
Microsoft Internet Explorer 9 does not properly handle the creation and initialization of string objects, which allows remote attackers to read data from arbitrary process-memory locations via a crafted web site, aka "Null Byte Information Disclosure Vulnerability."
Modifications to ACLs (Access Control Lists) in Microsoft Exchange 5.5 do not take effect until the directory store cache is refreshed.
IBM Db2 for Linux, UNIX and Windows (includes DB2 Connect Server) 11.5.0 through 11.5.9 and 12.1.0 through 12.1.1 could allow an authenticated user in federation environment, to cause a denial of service due to insufficient release of allocated memory after usage.
Windows Installer Elevation of Privilege Vulnerability
Improper initialization in some Intel(R) Graphics Driver before version 27.20.100.9030 may allow an authenticated user to potentially enable escalation of privilege via local access.
Improper initialization in the installer for some Intel(R) Graphics DCH Drivers for Windows 10 before version 27.20.100.9316 may allow an authenticated user to potentially enable denial of service via local access.
In Splunk Enterprise versions earlier than 8.2.12, 9.0.6, and 9.1.1, a dynamic link library (DLL) that ships with Splunk Enterprise references an insecure path for the OPENSSLDIR build definition. An attacker can abuse this reference and subsequently install malicious code to achieve privilege escalation on the Windows machine.
NVIDIA GPU Display Driver for Windows contains a vulnerability where the information from a previous client or another process could be disclosed. A successful exploit of this vulnerability might lead to code execution, information disclosure, or data tampering.
An information disclosure vulnerability exists when the Windows kernel fails to properly initialize a memory address, aka 'Windows Kernel Information Disclosure Vulnerability'.
An information disclosure vulnerability exists when the Windows kernel improperly initializes objects in memory. To exploit this vulnerability, an authenticated attacker could run a specially crafted application. An attacker who successfully exploited this vulnerability could obtain information to further compromise the user’s system. The update addresses the vulnerability by correcting how the Windows kernel initializes objects in memory.
Insufficient initialization in Intel(R) SGX SDK Windows versions 2.4.100.51291 and earlier, and Linux versions 2.6.100.51363 and earlier, may allow an authenticated user to enable information disclosure, escalation of privilege or denial of service via local access.
An information disclosure vulnerability exists when the Windows kernel improperly initializes objects in memory.To exploit this vulnerability, an authenticated attacker could run a specially crafted application, aka 'Windows Kernel Information Disclosure Vulnerability'. This CVE ID is unique from CVE-2019-0702, CVE-2019-0755, CVE-2019-0775, CVE-2019-0782.
An information disclosure vulnerability exists when the Windows kernel improperly initializes objects in memory.To exploit this vulnerability, an authenticated attacker could run a specially crafted application, aka 'Windows Kernel Information Disclosure Vulnerability'. This CVE ID is unique from CVE-2019-0621, CVE-2019-0661.
Improper initialization in some Intel(R) Aptio* V UEFI Firmware Integrator Tools may allow an authenticated user to potentially enable escalation of privilege via local access.
An information disclosure vulnerability exists when "Kernel Remote Procedure Call Provider" driver improperly initializes objects in memory, aka "MSRPC Information Disclosure Vulnerability." This affects Windows 7, Windows Server 2012 R2, Windows RT 8.1, Windows Server 2008, Windows Server 2019, Windows Server 2012, Windows 8.1, Windows Server 2016, Windows Server 2008 R2, Windows 10, Windows 10 Servers.
An information disclosure vulnerability exists when Remote Procedure Call runtime improperly initializes objects in memory, aka "Remote Procedure Call runtime Information Disclosure Vulnerability." This affects Windows 7, Windows Server 2012 R2, Windows RT 8.1, Windows Server 2008, Windows Server 2019, Windows Server 2012, Windows 8.1, Windows Server 2016, Windows Server 2008 R2, Windows 10, Windows 10 Servers.
Adobe Acrobat and Reader versions 2019.021.20061 and earlier, 2017.011.30156 and earlier, 2017.011.30156 and earlier, and 2015.006.30508 and earlier have a stack exhaustion vulnerability. Successful exploitation could lead to memory leak .
An information disclosure vulnerability exists when the Windows Remote Procedure Call (RPC) runtime improperly initializes objects in memory, aka 'Windows Remote Procedure Call Information Disclosure Vulnerability'.
An information disclosure vulnerability exists when Microsoft Edge based on Edge HTML improperly handles objects in memory, aka 'Microsoft Edge based on Edge HTML Information Disclosure Vulnerability'.
A vulnerability, which was classified as critical, has been found in TechPowerUp Ryzen DRAM Calculator 1.2.0.5. This issue affects some unknown processing in the library WinRing0x64.sys. The manipulation leads to improper initialization. Local access is required to approach this attack. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-221807.
This vulnerability allows remote attackers to execute arbitrary code on vulnerable installations of Foxit Reader 9.0.1.1049. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the handling of FlateDecode streams. The issue results from the lack of proper initialization of a pointer prior to accessing it. An attacker can leverage this vulnerability to execute code under the context of the current process. Was ZDI-CAN-5763.
Improper Initialization for some Intel Unison software may allow a privileged user to potentially enable denial of service via local access.
Adobe Acrobat and Reader versions 2019.021.20061 and earlier, 2017.011.30156 and earlier, 2017.011.30156 and earlier, and 2015.006.30508 and earlier have a stack exhaustion vulnerability. Successful exploitation could lead to memory leak .
Improper initialization for some Intel Unison software may allow an authenticated user to potentially enable information disclosure via local access.
Adobe Flash Player before 18.0.0.366 and 19.x through 22.x before 22.0.0.209 on Windows and OS X and before 11.2.202.632 on Linux allows attackers to obtain sensitive information from process memory via unspecified vectors.
The Windows kernel in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and 1709, Windows Server 2016 and Windows Server, version 1709 allows an information disclosure vulnerability due to the way memory addresses are handled, aka "Windows Kernel Information Disclosure Vulnerability". This CVE is unique from CVE-2018-0811, CVE-2018-0813, CVE-2018-0814, CVE-2018-0894, CVE-2018-0895, CVE-2018-0896, CVE-2018-0897, CVE-2018-0898, CVE-2018-0899, CVE-2018-0900, and CVE-2018-0901.