The "mxcsr P4" vulnerability in the Linux kernel before 2.2.17-14, when running on certain Intel CPUs, allows local users to cause a denial of service (system halt).
The sosendto function in slirp/udp.c in QEMU before 2.1.2 allows local users to cause a denial of service (NULL pointer dereference) by sending a udp packet with a value of 0 in the source port and address, which triggers access of an uninitialized socket.
choose_new_parent in Linux kernel before 2.6.11.12 includes certain debugging code, which allows local users to cause a denial of service (panic) by causing certain circumstances involving termination of a parent process.
Memory leak in __setlease in fs/locks.c in Linux kernel before 2.6.16.16 allows attackers to cause a denial of service (memory consumption) via unspecified actions related to an "uninitialised return value," aka "slab leak."
In QEMU 1:4.1-1, 1:2.1+dfsg-12+deb8u6, 1:2.8+dfsg-6+deb9u8, 1:3.1+dfsg-8~deb10u1, 1:3.1+dfsg-8+deb10u2, and 1:2.1+dfsg-12+deb8u12 (fixed), when executing script in lsi_execute_script(), the LSI scsi adapter emulator advances 's->dsp' index to read next opcode. This can lead to an infinite loop if the next opcode is empty. Move the existing loop exit after 10k iterations so that it covers no-op opcodes as well.
lease_init in fs/locks.c in Linux kernel before 2.6.16.16 allows attackers to cause a denial of service (fcntl_setlease lockup) via actions that cause lease_init to free a lock that might not have been allocated on the stack.
Integer overflow in the VGA module in QEMU allows local guest OS users to cause a denial of service (out-of-bounds read and QEMU process crash) by editing VGA registers in VBE mode.
arch/x86/kvm/vmx.c in the KVM subsystem in the Linux kernel before 3.12 does not have an exit handler for the INVEPT instruction, which allows guest OS users to cause a denial of service (guest OS crash) via a crafted application.
The strnlen_user function in Linux kernel before 2.6.16 on IBM S/390 can return an incorrect value, which allows local users to cause a denial of service via unknown vectors.
dbus 1.3.0 before 1.6.22 and 1.8.x before 1.8.6, when running on Linux 2.6.37-rc4 or later, allows local users to cause a denial of service (system-bus disconnect of other services or applications) by sending a message containing a file descriptor, then exceeding the maximum recursion depth before the initial message is forwarded.
The Linux kernel before 4.5 allows local users to bypass file-descriptor limits and cause a denial of service (memory consumption) by leveraging incorrect tracking of descriptor ownership and sending each descriptor over a UNIX socket before closing it. NOTE: this vulnerability exists because of an incorrect fix for CVE-2013-4312.
Linux kernel 2.6.15.1 and earlier, when running on SPARC architectures, allows local users to cause a denial of service (hang) via a "date -s" command, which causes invalid sign extended arguments to be provided to the get_compat_timespec function call.
Nullptr dereference when a null char is present in a proto symbol. The symbol is parsed incorrectly, leading to an unchecked call into the proto file's name during generation of the resulting error message. Since the symbol is incorrectly parsed, the file is nullptr. We recommend upgrading to version 3.15.0 or greater.
Improper conditions check in the voltage modulation interface for some Intel(R) Xeon(R) Scalable Processors may allow a privileged user to potentially enable denial of service via local access.
Unknown vulnerabilities in the UDP port allocation for Linux kernel before 2.2.19 could allow local users to cause a denial of service (deadlock).
D-Bus 1.3.0 through 1.6.x before 1.6.26, 1.8.x before 1.8.10, and 1.9.x before 1.9.2 allows local users to cause a denial of service (prevention of new connections and connection drop) by queuing the maximum number of file descriptors. NOTE: this vulnerability exists because of an incomplete fix for CVE-2014-3636.1.
Multiple vulnerabilities in Linux kernel before 2.6.13.2 allow local users to cause a denial of service (kernel OOPS from null dereference) via (1) fput in a 32-bit ioctl on 64-bit x86 systems or (2) sockfd_put in the 32-bit routing_ioctl function on 64-bit systems.
The ipt_recent kernel module (ipt_recent.c) in Linux kernel 2.6.12 and earlier does not properly perform certain time tests when the jiffies value is greater than LONG_MAX, which can cause ipt_recent netfilter rules to block too early, a different vulnerability than CVE-2005-2872.
Memory leak in the seq_file implementation in the SCSI procfs interface (sg.c) in Linux kernel 2.6.13 and earlier allows local users to cause a denial of service (memory consumption) via certain repeated reads from the /proc/scsi/sg/devices file, which is not properly handled when the next() iterator returns NULL or an error.
Linux kernel 2.6.8 to 2.6.14-rc2 allows local users to cause a denial of service (kernel OOPS) via a userspace process that issues a USB Request Block (URB) to a USB device and terminates before the URB is finished, which leads to a stale pointer reference.
The HFS and HFS+ (hfsplus) modules in Linux 2.6 allow attackers to cause a denial of service (oops) by using hfsplus to mount a filesystem that is not hfsplus.
The mq_open system call in Linux kernel 2.6.9, in certain situations, can decrement a counter twice ("double decrement") as a result of multiple calls to the mntput function when the dentry_open function call fails, which allows local users to cause a denial of service (panic) via unspecified attack vectors.
The audit system in Linux kernel 2.6.6, and other versions before 2.6.13.4, when CONFIG_AUDITSYSCALL is enabled, uses an incorrect function to free names_cache memory, which prevents the memory from being tracked by AUDITSYSCALL code and leads to a memory leak that allows attackers to cause a denial of service (memory consumption).
The sys_set_mempolicy function in mempolicy.c in Linux kernel 2.6.x allows local users to cause a denial of service (kernel BUG()) via a negative first argument.
The mprotect code (mprotect.c) in Linux 2.6 on Itanium IA64 Montecito processors does not properly maintain cache coherency as required by the architecture, which allows local users to cause a denial of service and possibly corrupt data by modifying PTE protections.
fs/exec.c in Linux 2.6, when one thread is tracing another thread that shares the same memory map, might allow local users to cause a denial of service (deadlock) by forcing a core dump when the traced thread is in the TASK_TRACED state.
Memory leak in the request_key_auth_destroy function in request_key_auth in Linux kernel 2.6.10 up to 2.6.13 allows local users to cause a denial of service (memory consumption) via a large number of authorization token keys.
Linux 2.6.11 on 64-bit x86 (x86_64) platforms does not use a guard page for the 47-bit address page to protect against an AMD K8 bug, which allows local users to cause a denial of service.
Memory leak in the sas_smp_get_phy_events function in drivers/scsi/libsas/sas_expander.c in the Linux kernel through 4.15.7 allows local users to cause a denial of service (memory consumption) via many read accesses to files in the /sys/class/sas_phy directory, as demonstrated by the /sys/class/sas_phy/phy-1:0:12/invalid_dword_count file.
The search_binary_handler function in exec.c in Linux 2.4 kernel on 64-bit x86 architectures does not check a return code for a particular function call when virtual memory is low, which allows local users to cause a denial of service (panic), as demonstrated by running a process using the bash ulimit -v command.
Memory leak in the hwsim_new_radio_nl function in drivers/net/wireless/mac80211_hwsim.c in the Linux kernel through 4.15.9 allows local users to cause a denial of service (memory consumption) by triggering an out-of-array error case.
Memory leak in the irda_bind function in net/irda/af_irda.c and later in drivers/staging/irda/net/af_irda.c in the Linux kernel before 4.17 allows local users to cause a denial of service (memory consumption) by repeatedly binding an AF_IRDA socket.
dbus 1.3.0 before 1.6.22 and 1.8.x before 1.8.6 allows local users to cause a denial of service (disconnect) via a certain sequence of crafted messages that cause the dbus-daemon to forward a message containing an invalid file descriptor.
The find_target function in ptrace32.c in the Linux kernel 2.4.x before 2.4.29 does not properly handle a NULL return value from another function, which allows local users to cause a denial of service (kernel crash/oops) by running a 32-bit ltrace program with the -i option on a 64-bit executable program.
An infinite loop flaw was found in the e1000 NIC emulator of the QEMU. This issue occurs while processing transmits (tx) descriptors in process_tx_desc if various descriptor fields are initialized with invalid values. This flaw allows a guest to consume CPU cycles on the host, resulting in a denial of service. The highest threat from this vulnerability is to system availability.
The Linux 2.2.x kernel does not restrict the number of Unix domain sockets as defined by the wmem_max parameter, which allows local users to cause a denial of service by requesting a large number of sockets.
An integer overflow issue was found in the vmxnet3 NIC emulator of the QEMU for versions up to v5.2.0. It may occur if a guest was to supply invalid values for rx/tx queue size or other NIC parameters. A privileged guest user may use this flaw to crash the QEMU process on the host resulting in DoS scenario.
Array index overflow in the xfrm_sk_policy_insert function in xfrm_user.c in Linux kernel 2.6 allows local users to cause a denial of service (oops or deadlock) and possibly execute arbitrary code via a p->dir value that is larger than XFRM_POLICY_OUT, which is used as an index in the sock->sk_policy array.
A stack overflow via an infinite recursion vulnerability was found in the eepro100 i8255x device emulator of QEMU. This issue occurs while processing controller commands due to a DMA reentry issue. This flaw allows a guest user or process to consume CPU cycles or crash the QEMU process on the host, resulting in a denial of service. The highest threat from this vulnerability is to system availability.
An out-of-bounds heap buffer access issue was found in the ARM Generic Interrupt Controller emulator of QEMU up to and including qemu 4.2.0on aarch64 platform. The issue occurs because while writing an interrupt ID to the controller memory area, it is not masked to be 4 bits wide. It may lead to the said issue while updating controller state fields and their subsequent processing. A privileged guest user may use this flaw to crash the QEMU process on the host resulting in DoS scenario.
The Linux kernel 2.6 before 2.6.12.1 allows local users to cause a denial of service (kernel panic) via a non group-leader thread executing a different program than was pending in itimer, which causes the signal to be delivered to the old group-leader task, which does not exist.
Vulnerability in the MySQL Server component of Oracle MySQL (subcomponent: Server: Connection). Supported versions that are affected are 5.7.21 and prior. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where MySQL Server executes to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 4.4 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H).
A flaw was found in the Linux kernel's implementation of string matching within a packet. A privileged user (with root or CAP_NET_ADMIN) when inserting iptables rules could insert a rule which can panic the system. Kernel before kernel 5.5-rc1 is affected.
The ptrace call in the Linux kernel 2.6.8.1 and 2.6.10 for the AMD64 platform allows local users to cause a denial of service (kernel crash) via a "non-canonical" address.
kernel/sched/fair.c in the Linux kernel before 5.3.9, when cpu.cfs_quota_us is used (e.g., with Kubernetes), allows attackers to cause a denial of service against non-cpu-bound applications by generating a workload that triggers unwanted slice expiration, aka CID-de53fd7aedb1. (In other words, although this slice expiration would typically be seen with benign workloads, it is possible that an attacker could calculate how many stray requests are required to force an entire Kubernetes cluster into a low-performance state caused by slice expiration, and ensure that a DDoS attack sent that number of stray requests. An attack does not affect the stability of the kernel; it only causes mismanagement of application execution.)
The madvise_willneed function in mm/madvise.c in the Linux kernel before 4.14.4 allows local users to cause a denial of service (infinite loop) by triggering use of MADVISE_WILLNEED for a DAX mapping.
Mutt before 1.5.20 patch 7 allows an attacker to cause a denial of service via a series of requests to mutt temporary files.
syscall in the Linux kernel 2.6.8.1 and 2.6.10 for the AMD64 platform, when running in 32-bit compatibility mode, allows local users to cause a denial of service (kernel hang) via crafted arguments.
In the AppleTalk subsystem in the Linux kernel before 5.1, there is a potential NULL pointer dereference because register_snap_client may return NULL. This will lead to denial of service in net/appletalk/aarp.c and net/appletalk/ddp.c, as demonstrated by unregister_snap_client, aka CID-9804501fa122.
NVIDIA GPU Display Driver for Windows and Linux, all versions, contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape or IOCTL in which improper validation of a user pointer may lead to denial of service.