Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both.
bzip2 allows remote attackers to cause a denial of service (hard drive consumption) via a crafted bzip2 file that causes an infinite loop (a.k.a "decompression bomb").
Lib/zipfile.py in Python through 3.7.2 allows remote attackers to cause a denial of service (resource consumption) via a ZIP bomb.
The (1) xmlParserEntityCheck and (2) xmlParseAttValueComplex functions in parser.c in libxml2 2.9.3 do not properly keep track of the recursion depth, which allows context-dependent attackers to cause a denial of service (stack consumption and application crash) via a crafted XML document containing a large number of nested entity references.
Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU.
Unbound before 1.9.4 accesses uninitialized memory, which allows remote attackers to trigger a crash via a crafted NOTIFY query. The source IP address of the query must match an access-control rule.
Integer overflow in the DHCP client (udhcpc) in BusyBox before 1.25.0 allows remote attackers to cause a denial of service (crash) via a malformed RFC1035-encoded domain name, which triggers an out-of-bounds heap write.
schpw.c in the kpasswd service in kadmind in MIT Kerberos 5 (aka krb5) before 1.11.3 does not properly validate UDP packets before sending responses, which allows remote attackers to cause a denial of service (CPU and bandwidth consumption) via a forged packet that triggers a communication loop, as demonstrated by krb_pingpong.nasl, a related issue to CVE-1999-0103.
Stack-based buffer overflow in the nss_dns implementation of the getnetbyname function in GNU C Library (aka glibc) before 2.24 allows context-dependent attackers to cause a denial of service (stack consumption and application crash) via a long name.
mono 2.10.x ASP.NET Web Form Hash collision DoS
Integer underflow in pppd in cbcp.c for ppp 2.4.1 allows remote attackers to cause a denial of service (daemon crash) via a CBCP packet with an invalid length value that causes pppd to access an incorrect memory location.
Buffer overflow in the skip-scan optimization in SQLite 3.8.2 allows remote attackers to cause a denial of service (crash) via crafted SQL statements.
A memory leak in the kernel_read_file function in fs/exec.c in the Linux kernel through 4.20.11 allows attackers to cause a denial of service (memory consumption) by triggering vfs_read failures.
Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both.
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
The unformat_24bit_color function in the format parsing code in Irssi before 0.8.20, when compiled with true-color enabled, allows remote attackers to cause a denial of service (heap corruption and crash) via an incomplete 24bit color code.
In the Linux kernel before 4.20.5, attackers can trigger a drivers/char/ipmi/ipmi_msghandler.c use-after-free and OOPS by arranging for certain simultaneous execution of the code, as demonstrated by a "service ipmievd restart" loop.
HAProxy 1.4 before 1.4.24 and 1.5 before 1.5-dev19, when configured to use hdr_ip or other "hdr_*" functions with a negative occurrence count, allows remote attackers to cause a denial of service (negative array index usage and crash) via an HTTP header with a certain number of values, related to the MAX_HDR_HISTORY variable.
qmp_guest_file_read in qga/commands-posix.c and qga/commands-win32.c in qemu-ga (aka QEMU Guest Agent) in QEMU 2.12.50 has an integer overflow causing a g_malloc0() call to trigger a segmentation fault when trying to allocate a large memory chunk. The vulnerability can be exploited by sending a crafted QMP command (including guest-file-read with a large count value) to the agent via the listening socket.
Django 1.11.x before 1.11.19, 2.0.x before 2.0.11, and 2.1.x before 2.1.6 allows Uncontrolled Memory Consumption via a malicious attacker-supplied value to the django.utils.numberformat.format() function.
Eye of GNOME (aka eog) 3.16.5, 3.17.x, 3.18.x before 3.18.3, 3.19.x, and 3.20.x before 3.20.4, when used with glib before 2.44.1, allow remote attackers to cause a denial of service (out-of-bounds write and crash) via vectors involving passing invalid UTF-8 to GMarkup.
Lua 5.3.5 has a use-after-free in lua_upvaluejoin in lapi.c. For example, a crash outcome might be achieved by an attacker who is able to trigger a debug.upvaluejoin call in which the arguments have certain relationships.
An issue was discovered in xfs_setattr_nonsize in fs/xfs/xfs_iops.c in the Linux kernel through 5.2.9. XFS partially wedges when a chgrp fails on account of being out of disk quota. xfs_setattr_nonsize is failing to unlock the ILOCK after the xfs_qm_vop_chown_reserve call fails. This is primarily a local DoS attack vector, but it might result as well in remote DoS if the XFS filesystem is exported for instance via NFS.
libcurl versions from 7.34.0 to before 7.64.0 are vulnerable to a heap out-of-bounds read in the code handling the end-of-response for SMTP. If the buffer passed to `smtp_endofresp()` isn't NUL terminated and contains no character ending the parsed number, and `len` is set to 5, then the `strtol()` call reads beyond the allocated buffer. The read contents will not be returned to the caller.
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Utilities). Supported versions that are affected are Java SE: 7u221, 8u212, 11.0.3 and 12.0.1; Java SE Embedded: 8u211. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
A flaw was found in the way civetweb frontend was handling requests for ceph RGW server with SSL enabled. An unauthenticated attacker could create multiple connections to ceph RADOS gateway to exhaust file descriptors for ceph-radosgw service resulting in a remote denial of service.
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Utilities). Supported versions that are affected are Java SE: 7u221, 8u212, 11.0.3 and 12.0.1; Java SE Embedded: 8u211. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the MySQL Connectors product of Oracle MySQL (component: Connector/ODBC). Supported versions that are affected are 5.3.13 and prior and 8.0.17 and prior. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise MySQL Connectors. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of MySQL Connectors. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
An issue was discovered in LibVNCServer before 0.9.13. libvncserver/ws_decode.c can lead to a crash because of unaligned accesses in hybiReadAndDecode.
In Lib/tarfile.py in Python through 3.8.3, an attacker is able to craft a TAR archive leading to an infinite loop when opened by tarfile.open, because _proc_pax lacks header validation.
In ImageMagick before 7.0.8-25, a memory leak exists in WriteDIBImage in coders/dib.c.
Two memory leaks in the v3d_submit_cl_ioctl() function in drivers/gpu/drm/v3d/v3d_gem.c in the Linux kernel before 5.3.11 allow attackers to cause a denial of service (memory consumption) by triggering kcalloc() or v3d_job_init() failures, aka CID-29cd13cfd762.
There is a DoS vulnerability in Pillow before 6.2.2 caused by FpxImagePlugin.py calling the range function on an unvalidated 32-bit integer if the number of bands is large. On Windows running 32-bit Python, this results in an OverflowError or MemoryError due to the 2 GB limit. However, on Linux running 64-bit Python this results in the process being terminated by the OOM killer.
A memory leak in the adis_update_scan_mode_burst() function in drivers/iio/imu/adis_buffer.c in the Linux kernel before 5.3.9 allows attackers to cause a denial of service (memory consumption), aka CID-9c0530e898f3.
xmlParseBalancedChunkMemoryRecover in parser.c in libxml2 before 2.9.10 has a memory leak related to newDoc->oldNs.
A memory leak in the rsi_send_beacon() function in drivers/net/wireless/rsi/rsi_91x_mgmt.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering rsi_prepare_beacon() failures, aka CID-d563131ef23c.
A memory leak in the crypto_reportstat() function in crypto/crypto_user_stat.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering crypto_reportstat_alg() failures, aka CID-c03b04dcdba1.
In ImageMagick before 7.0.8-25, some memory leaks exist in DecodeImage in coders/pcd.c.
Oniguruma through 6.9.3, as used in PHP 7.3.x and other products, has a heap-based buffer over-read in str_lower_case_match in regexec.c.
A memory leak in the fastrpc_dma_buf_attach() function in drivers/misc/fastrpc.c in the Linux kernel before 5.3.9 allows attackers to cause a denial of service (memory consumption) by triggering dma_get_sgtable() failures, aka CID-fc739a058d99.
A memory leak in the adis_update_scan_mode() function in drivers/iio/imu/adis_buffer.c in the Linux kernel before 5.3.9 allows attackers to cause a denial of service (memory consumption), aka CID-ab612b1daf41.
The format_send_to_gui function in the format parsing code in Irssi before 0.8.20 allows remote attackers to cause a denial of service (heap corruption and crash) via vectors involving the length of a string.
archive_read_format_rar_read_data in archive_read_support_format_rar.c in libarchive before 3.4.0 has a use-after-free in a certain ARCHIVE_FAILED situation, related to Ppmd7_DecodeSymbol.
openslp: SLPIntersectStringList()' Function has a DoS vulnerability
A memory leak in the dwc3_pci_probe() function in drivers/usb/dwc3/dwc3-pci.c in the Linux kernel through 5.3.9 allows attackers to cause a denial of service (memory consumption) by triggering platform_device_add_properties() failures, aka CID-9bbfceea12a8.
Oniguruma before 6.9.3 allows Stack Exhaustion in regcomp.c because of recursion in regparse.c.
The vfprintf function in stdio-common/vfprintf.c in libc in GNU C Library (aka glibc) 2.12 and other versions does not properly calculate a buffer length, which allows context-dependent attackers to bypass the FORTIFY_SOURCE format-string protection mechanism and cause a denial of service (stack corruption and crash) via a format string that uses positional parameters and many format specifiers.
The vfprintf function in stdio-common/vfprintf.c in libc in GNU C Library (aka glibc) 2.14 and other versions does not properly calculate a buffer length, which allows context-dependent attackers to bypass the FORTIFY_SOURCE format-string protection mechanism and cause a denial of service (segmentation fault and crash) via a format string with a large number of format specifiers that triggers "desynchronization within the buffer size handling," a different vulnerability than CVE-2012-3404.
A vulnerability in the email parsing module Clam AntiVirus (ClamAV) Software versions 0.102.0, 0.101.4 and prior could allow an unauthenticated, remote attacker to cause a denial of service condition on an affected device. The vulnerability is due to inefficient MIME parsing routines that result in extremely long scan times of specially formatted email files. An attacker could exploit this vulnerability by sending a crafted email file to an affected device. An exploit could allow the attacker to cause the ClamAV scanning process to scan the crafted email file indefinitely, resulting in a denial of service condition.
lmp_print_data_link_subobjs() in print-lmp.c in tcpdump before 4.9.3 lacks certain bounds checks.