Qemu has a Buffer Overflow in pcnet_receive in hw/net/pcnet.c because an incorrect integer data type is used.
Qemu has a Buffer Overflow in rtl8139_do_receive in hw/net/rtl8139.c because an incorrect integer data type is used.
qmp_guest_file_read in qga/commands-posix.c and qga/commands-win32.c in qemu-ga (aka QEMU Guest Agent) in QEMU 2.12.50 has an integer overflow causing a g_malloc0() call to trigger a segmentation fault when trying to allocate a large memory chunk. The vulnerability can be exploited by sending a crafted QMP command (including guest-file-read with a large count value) to the agent via the listening socket.
hw/rdma/vmw/pvrdma_cmd.c in QEMU allows attackers to cause a denial of service (NULL pointer dereference or excessive memory allocation) in create_cq_ring or create_qp_rings.
QEMU can have an infinite loop in hw/rdma/vmw/pvrdma_dev_ring.c because return values are not checked (and -1 is mishandled).
hw/rdma/vmw/pvrdma_main.c in QEMU does not implement a read operation (such as uar_read by analogy to uar_write), which allows attackers to cause a denial of service (NULL pointer dereference).
hw/sparc64/sun4u.c in QEMU 3.1.50 is vulnerable to a NULL pointer dereference, which allows the attacker to cause a denial of service via a device driver.
The Human Monitor Interface support in QEMU allows remote attackers to cause a denial of service (out-of-bounds write and application crash).
hw/ide/core.c in QEMU does not properly restrict the commands accepted by an ATAPI device, which allows guest users to cause a denial of service or possibly have unspecified other impact via certain IDE commands, as demonstrated by a WIN_READ_NATIVE_MAX command to an empty drive, which triggers a divide-by-zero error and instance crash.
An issue was discovered in ide_dma_cb() in hw/ide/core.c in QEMU 2.4.0 through 4.2.0. The guest system can crash the QEMU process in the host system via a special SCSI_IOCTL_SEND_COMMAND. It hits an assertion that implies that the size of successful DMA transfers there must be a multiple of 512 (the size of a sector). NOTE: a member of the QEMU security team disputes the significance of this issue because a "privileged guest user has many ways to cause similar DoS effect, without triggering this assert.
The set_pixel_format function in ui/vnc.c in QEMU allows remote attackers to cause a denial of service (crash) via a small bytes_per_pixel value.
libslirp 4.0.0, as used in QEMU 4.1.0, has a use-after-free in ip_reass in ip_input.c.
interface_release_resource in hw/display/qxl.c in QEMU 3.1.x through 4.0.0 has a NULL pointer dereference.
The protocol_client_msg function in vnc.c in the VNC server in (1) Qemu 0.9.1 and earlier and (2) KVM kvm-79 and earlier allows remote attackers to cause a denial of service (infinite loop) via a certain message.
The qemu-nbd server in QEMU (aka Quick Emulator), when built with the Network Block Device (NBD) Server support, allows remote attackers to cause a denial of service (segmentation fault and server crash) by leveraging failure to ensure that all initialization occurs before talking to a client in the nbd_negotiate function.
An assertion-failure flaw was found in Qemu before 2.10.1, in the Network Block Device (NBD) server's initial connection negotiation, where the I/O coroutine was undefined. This could crash the qemu-nbd server if a client sent unexpected data during connection negotiation. A remote user or process could use this flaw to crash the qemu-nbd server resulting in denial of service.
Buffer overflow in NetRxPkt::ehdr_buf in hw/net/net_rx_pkt.c in QEMU (aka Quick Emulator), when the VLANSTRIP feature is enabled on the vmxnet3 device, allows remote attackers to cause a denial of service (out-of-bounds access and QEMU process crash) via vectors related to VLAN stripping.
VNC server implementation in Quick Emulator (QEMU) 2.11.0 and older was found to be vulnerable to an unbounded memory allocation issue, as it did not throttle the framebuffer updates sent to its client. If the client did not consume these updates, VNC server allocates growing memory to hold onto this data. A malicious remote VNC client could use this flaw to cause DoS to the server host.
A flaw was found in the virtio-net device of QEMU. This flaw was inadvertently introduced with the fix for CVE-2021-3748, which forgot to unmap the cached virtqueue elements on error, leading to memory leakage and other unexpected results. Affected QEMU version: 6.2.0.
The Network Block Device (NBD) server in Quick Emulator (QEMU) before 2.11 is vulnerable to a denial of service issue. It could occur if a client sent large option requests, making the server waste CPU time on reading up to 4GB per request. A client could use this flaw to keep the NBD server from serving other requests, resulting in DoS.
Qemu through 2.10.0 allows remote attackers to cause a memory leak by triggering slow data-channel read operations, related to io/channel-websock.c.
Use-after-free vulnerability in the sofree function in slirp/socket.c in QEMU (aka Quick Emulator) allows attackers to cause a denial of service (QEMU instance crash) by leveraging failure to properly clear ifq_so from pending packets.
qemu-nbd in QEMU (aka Quick Emulator) does not ignore SIGPIPE, which allows remote attackers to cause a denial of service (daemon crash) by disconnecting during a server-to-client reply attempt.
hw/virtio/virtio.c in the Virtual Network Device (virtio-net) support in QEMU, when big or mergeable receive buffers are not supported, allows remote attackers to cause a denial of service (guest network consumption) via a flood of jumbo frames on the (1) tuntap or (2) macvtap interface.
qemu_deliver_packet_iov in net/net.c in Qemu accepts packet sizes greater than INT_MAX, which allows attackers to cause a denial of service or possibly have unspecified other impact.
In QEMU through 5.0.0, an integer overflow was found in the SM501 display driver implementation. This flaw occurs in the COPY_AREA macro while handling MMIO write operations through the sm501_2d_engine_write() callback. A local attacker could abuse this flaw to crash the QEMU process in sm501_2d_operation() in hw/display/sm501.c on the host, resulting in a denial of service.
An integer overflow was found in QEMU 4.0.1 through 4.2.0 in the way it implemented ATI VGA emulation. This flaw occurs in the ati_2d_blt() routine in hw/display/ati-2d.c while handling MMIO write operations through the ati_mm_write() callback. A malicious guest could abuse this flaw to crash the QEMU process, resulting in a denial of service.
Qemu before 1.6.2 block diver for the various disk image formats used by Bochs and for the QCOW version 2 format, are vulnerable to a possible crash caused by signed data types or a logic error while creating QCOW2 snapshots, which leads to incorrectly calling update_refcount() routine.
The Bluetooth subsystem in QEMU mishandles negative values for length variables, leading to memory corruption.
Qemu has integer overflows because IOReadHandler and its associated functions use a signed integer data type for a size value.
Integer overflow in hw/virtio/virtio-crypto.c in QEMU (aka Quick Emulator) allows local guest OS privileged users to cause a denial of service (QEMU process crash) or possibly execute arbitrary code on the host via a crafted virtio-crypto request, which triggers a heap-based buffer overflow.
Integer overflow in the macro ROUND_UP (n, d) in Quick Emulator (Qemu) allows a user to cause a denial of service (Qemu process crash).
Integer overflow in the load_multiboot function in hw/i386/multiboot.c in QEMU (aka Quick Emulator) allows local guest OS users to execute arbitrary code on the host via crafted multiboot header address values, which trigger an out-of-bounds write.
Integer overflow in the VGA module in QEMU allows local guest OS users to cause a denial of service (out-of-bounds read and QEMU process crash) by editing VGA registers in VBE mode.
Qemu emulator <= 3.0.0 built with the NE2000 NIC emulation support is vulnerable to an integer overflow, which could lead to buffer overflow issue. It could occur when receiving packets over the network. A user inside guest could use this flaw to crash the Qemu process resulting in DoS.
Integer overflow in the net_tx_pkt_init function in hw/net/net_tx_pkt.c in QEMU (aka Quick Emulator) allows local guest OS administrators to cause a denial of service (QEMU process crash) via the maximum fragmentation count, which triggers an unchecked multiplication and NULL pointer dereference.
A flaw was found in the QXL display device emulation in QEMU. An integer overflow in the cursor_alloc() function can lead to the allocation of a small cursor object followed by a subsequent heap-based buffer overflow. This flaw allows a malicious privileged guest user to crash the QEMU process on the host or potentially execute arbitrary code within the context of the QEMU process.
An integer overflow was found in the QEMU implementation of VMWare's paravirtual RDMA device in versions prior to 6.1.0. The issue occurs while handling a "PVRDMA_REG_DSRHIGH" write from the guest due to improper input validation. This flaw allows a privileged guest user to make QEMU allocate a large amount of memory, resulting in a denial of service. The highest threat from this vulnerability is to system availability.
Multiple integer overflows in the block drivers in QEMU, possibly before 2.0.0, allow local users to cause a denial of service (crash) via a crafted catalog size in (1) the parallels_open function in block/parallels.c or (2) bochs_open function in bochs.c, a large L1 table in the (3) qcow2_snapshot_load_tmp in qcow2-snapshot.c or (4) qcow2_grow_l1_table function in qcow2-cluster.c, (5) a large request in the bdrv_check_byte_request function in block.c and other block drivers, (6) crafted cluster indexes in the get_refcount function in qcow2-refcount.c, or (7) a large number of blocks in the cloop_open function in cloop.c, which trigger buffer overflows, memory corruption, large memory allocations and out-of-bounds read and writes.
An integer overflow issue was found in the vmxnet3 NIC emulator of the QEMU for versions up to v5.2.0. It may occur if a guest was to supply invalid values for rx/tx queue size or other NIC parameters. A privileged guest user may use this flaw to crash the QEMU process on the host resulting in DoS scenario.
Multiple integer overflows in the (1) v9fs_xattr_read and (2) v9fs_xattr_write functions in hw/9pfs/9p.c in QEMU (aka Quick Emulator) allow local guest OS administrators to cause a denial of service (QEMU process crash) via a crafted offset, which triggers an out-of-bounds access.
Integer overflow in the emulated_apdu_from_guest function in usb/dev-smartcard-reader.c in Quick Emulator (Qemu), when built with the CCID Card device emulator support, allows local users to cause a denial of service (application crash) via a large Application Protocol Data Units (APDU) unit.
An Integer Overflow exists in WebKit in Google Chrome before Blink M11 in the macOS WebCore::GraphicsContext::fillRect function.
A malicious client which is allowed to send very large amounts of traffic (billions of packets) to a DHCP server can eventually overflow a 32-bit reference counter, potentially causing dhcpd to crash. Affects ISC DHCP 4.1.0 -> 4.1-ESV-R15, 4.2.0 -> 4.2.8, 4.3.0 -> 4.3.6, 4.4.0.
An issue was discovered in Contiki through 3.0. An Integer Overflow exists in the uIP TCP/IP Stack component when parsing TCP MSS options of IPv4 network packets in uip_process in net/ipv4/uip.c.
Memory leaks were discovered in the CoAP library in Arm Mbed OS 5.15.3 when using the Arm mbed-coap library 5.1.5. The CoAP parser is responsible for parsing received CoAP packets. The function sn_coap_parser_options_parse() parses the CoAP option number field of all options present in the input packet. Each option number is calculated as a sum of the previous option number and a delta of the current option. The delta and the previous option number are expressed as unsigned 16-bit integers. Due to lack of overflow detection, it is possible to craft a packet that wraps the option number around and results in the same option number being processed again in a single packet. Certain options allocate memory by calling a memory allocation function. In the cases of COAP_OPTION_URI_QUERY, COAP_OPTION_URI_PATH, COAP_OPTION_LOCATION_QUERY, and COAP_OPTION_ETAG, there is no check on whether memory has already been allocated, which in conjunction with the option number integer overflow may lead to multiple assignments of allocated memory to a single pointer. This has been demonstrated to lead to memory leak by buffer orphaning. As a result, the memory is never freed.
An integer overflow vulnerability exists with the length of websocket frames received via a websocket connection. An attacker would use this flaw to cause a denial of service attack on an HTTP Server allowing websocket connections.
Modules/_pickle.c in Python before 3.7.1 has an integer overflow via a large LONG_BINPUT value that is mishandled during a "resize to twice the size" attempt. This issue might cause memory exhaustion, but is only relevant if the pickle format is used for serializing tens or hundreds of gigabytes of data. This issue is fixed in: v3.4.10, v3.4.10rc1; v3.5.10, v3.5.10rc1, v3.5.7, v3.5.7rc1, v3.5.8, v3.5.8rc1, v3.5.8rc2, v3.5.9; v3.6.10, v3.6.10rc1, v3.6.11, v3.6.11rc1, v3.6.12, v3.6.7, v3.6.7rc1, v3.6.7rc2, v3.6.8, v3.6.8rc1, v3.6.9, v3.6.9rc1; v3.7.1, v3.7.1rc1, v3.7.1rc2, v3.7.2, v3.7.2rc1, v3.7.3, v3.7.3rc1, v3.7.4, v3.7.4rc1, v3.7.4rc2, v3.7.5, v3.7.5rc1, v3.7.6, v3.7.6rc1, v3.7.7, v3.7.7rc1, v3.7.8, v3.7.8rc1, v3.7.9.
Multiple integer overflows in audioop.c in the audioop module in Python 2.6, 2.7, 3.1, and 3.2 allow context-dependent attackers to cause a denial of service (application crash) via a large fragment, as demonstrated by a call to audioop.lin2lin with a long string in the first argument, leading to a buffer overflow. NOTE: this vulnerability exists because of an incorrect fix for CVE-2008-3143.5.
In exif_data_load_data_thumbnail of exif-data.c, there is a possible denial of service due to an integer overflow. This could lead to remote denial of service with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10Android ID: A-145075076