hso_free_net_device in drivers/net/usb/hso.c in the Linux kernel through 5.13.4 calls unregister_netdev without checking for the NETREG_REGISTERED state, leading to a use-after-free and a double free.
The MOTD update script in the base-files package in Ubuntu 18.04 LTS before 10.1ubuntu2.2, and Ubuntu 18.10 before 10.1ubuntu6 incorrectly handled temporary files. A local attacker could use this issue to cause a denial of service, or possibly escalate privileges if kernel symlink restrictions were disabled.
nbd_add_socket in drivers/block/nbd.c in the Linux kernel through 5.10.12 has an ndb_queue_rq use-after-free that could be triggered by local attackers (with access to the nbd device) via an I/O request at a certain point during device setup, aka CID-b98e762e3d71.
In arch/x86/lib/insn-eval.c in the Linux kernel before 5.1.9, there is a use-after-free for access to an LDT entry because of a race condition between modify_ldt() and a #BR exception for an MPX bounds violation.
The svpn component of the F5 BIG-IP APM client prior to version 7.1.7.2 for Linux and macOS runs as a privileged process and can allow an unprivileged user to get ownership of files owned by root on the local client host in a race condition.
In the Linux kernel 4.15.x through 4.19.x before 4.19.2, map_write() in kernel/user_namespace.c allows privilege escalation because it mishandles nested user namespaces with more than 5 UID or GID ranges. A user who has CAP_SYS_ADMIN in an affected user namespace can bypass access controls on resources outside the namespace, as demonstrated by reading /etc/shadow. This occurs because an ID transformation takes place properly for the namespaced-to-kernel direction but not for the kernel-to-namespaced direction.
In the Linux kernel, the following vulnerability has been resolved: drm/gma500: Fix BUG: sleeping function called from invalid context errors gma_crtc_page_flip() was holding the event_lock spinlock while calling crtc_funcs->mode_set_base() which takes ww_mutex. The only reason to hold event_lock is to clear gma_crtc->page_flip_event on mode_set_base() errors. Instead unlock it after setting gma_crtc->page_flip_event and on errors re-take the lock and clear gma_crtc->page_flip_event it it is still set. This fixes the following WARN/stacktrace: [ 512.122953] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:870 [ 512.123004] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1253, name: gnome-shell [ 512.123031] preempt_count: 1, expected: 0 [ 512.123048] RCU nest depth: 0, expected: 0 [ 512.123066] INFO: lockdep is turned off. [ 512.123080] irq event stamp: 0 [ 512.123094] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [ 512.123134] hardirqs last disabled at (0): [<ffffffff8d0ec28c>] copy_process+0x9fc/0x1de0 [ 512.123176] softirqs last enabled at (0): [<ffffffff8d0ec28c>] copy_process+0x9fc/0x1de0 [ 512.123207] softirqs last disabled at (0): [<0000000000000000>] 0x0 [ 512.123233] Preemption disabled at: [ 512.123241] [<0000000000000000>] 0x0 [ 512.123275] CPU: 3 PID: 1253 Comm: gnome-shell Tainted: G W 5.19.0+ #1 [ 512.123304] Hardware name: Packard Bell dot s/SJE01_CT, BIOS V1.10 07/23/2013 [ 512.123323] Call Trace: [ 512.123346] <TASK> [ 512.123370] dump_stack_lvl+0x5b/0x77 [ 512.123412] __might_resched.cold+0xff/0x13a [ 512.123458] ww_mutex_lock+0x1e/0xa0 [ 512.123495] psb_gem_pin+0x2c/0x150 [gma500_gfx] [ 512.123601] gma_pipe_set_base+0x76/0x240 [gma500_gfx] [ 512.123708] gma_crtc_page_flip+0x95/0x130 [gma500_gfx] [ 512.123808] drm_mode_page_flip_ioctl+0x57d/0x5d0 [ 512.123897] ? drm_mode_cursor2_ioctl+0x10/0x10 [ 512.123936] drm_ioctl_kernel+0xa1/0x150 [ 512.123984] drm_ioctl+0x21f/0x420 [ 512.124025] ? drm_mode_cursor2_ioctl+0x10/0x10 [ 512.124070] ? rcu_read_lock_bh_held+0xb/0x60 [ 512.124104] ? lock_release+0x1ef/0x2d0 [ 512.124161] __x64_sys_ioctl+0x8d/0xd0 [ 512.124203] do_syscall_64+0x58/0x80 [ 512.124239] ? do_syscall_64+0x67/0x80 [ 512.124267] ? trace_hardirqs_on_prepare+0x55/0xe0 [ 512.124300] ? do_syscall_64+0x67/0x80 [ 512.124340] ? rcu_read_lock_sched_held+0x10/0x80 [ 512.124377] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 512.124411] RIP: 0033:0x7fcc4a70740f [ 512.124442] Code: 00 48 89 44 24 18 31 c0 48 8d 44 24 60 c7 04 24 10 00 00 00 48 89 44 24 08 48 8d 44 24 20 48 89 44 24 10 b8 10 00 00 00 0f 05 <89> c2 3d 00 f0 ff ff 77 18 48 8b 44 24 18 64 48 2b 04 25 28 00 00 [ 512.124470] RSP: 002b:00007ffda73f5390 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [ 512.124503] RAX: ffffffffffffffda RBX: 000055cc9e474500 RCX: 00007fcc4a70740f [ 512.124524] RDX: 00007ffda73f5420 RSI: 00000000c01864b0 RDI: 0000000000000009 [ 512.124544] RBP: 00007ffda73f5420 R08: 000055cc9c0b0cb0 R09: 0000000000000034 [ 512.124564] R10: 0000000000000000 R11: 0000000000000246 R12: 00000000c01864b0 [ 512.124584] R13: 0000000000000009 R14: 000055cc9df484d0 R15: 000055cc9af5d0c0 [ 512.124647] </TASK>
In the Linux kernel, the following vulnerability has been resolved: netfilter: nfnetlink_osf: fix possible bogus match in nf_osf_find() nf_osf_find() incorrectly returns true on mismatch, this leads to copying uninitialized memory area in nft_osf which can be used to leak stale kernel stack data to userspace.
In the Linux kernel, the following vulnerability has been resolved: tcp: TX zerocopy should not sense pfmemalloc status We got a recent syzbot report [1] showing a possible misuse of pfmemalloc page status in TCP zerocopy paths. Indeed, for pages coming from user space or other layers, using page_is_pfmemalloc() is moot, and possibly could give false positives. There has been attempts to make page_is_pfmemalloc() more robust, but not using it in the first place in this context is probably better, removing cpu cycles. Note to stable teams : You need to backport 84ce071e38a6 ("net: introduce __skb_fill_page_desc_noacc") as a prereq. Race is more probable after commit c07aea3ef4d4 ("mm: add a signature in struct page") because page_is_pfmemalloc() is now using low order bit from page->lru.next, which can change more often than page->index. Low order bit should never be set for lru.next (when used as an anchor in LRU list), so KCSAN report is mostly a false positive. Backporting to older kernel versions seems not necessary. [1] BUG: KCSAN: data-race in lru_add_fn / tcp_build_frag write to 0xffffea0004a1d2c8 of 8 bytes by task 18600 on cpu 0: __list_add include/linux/list.h:73 [inline] list_add include/linux/list.h:88 [inline] lruvec_add_folio include/linux/mm_inline.h:105 [inline] lru_add_fn+0x440/0x520 mm/swap.c:228 folio_batch_move_lru+0x1e1/0x2a0 mm/swap.c:246 folio_batch_add_and_move mm/swap.c:263 [inline] folio_add_lru+0xf1/0x140 mm/swap.c:490 filemap_add_folio+0xf8/0x150 mm/filemap.c:948 __filemap_get_folio+0x510/0x6d0 mm/filemap.c:1981 pagecache_get_page+0x26/0x190 mm/folio-compat.c:104 grab_cache_page_write_begin+0x2a/0x30 mm/folio-compat.c:116 ext4_da_write_begin+0x2dd/0x5f0 fs/ext4/inode.c:2988 generic_perform_write+0x1d4/0x3f0 mm/filemap.c:3738 ext4_buffered_write_iter+0x235/0x3e0 fs/ext4/file.c:270 ext4_file_write_iter+0x2e3/0x1210 call_write_iter include/linux/fs.h:2187 [inline] new_sync_write fs/read_write.c:491 [inline] vfs_write+0x468/0x760 fs/read_write.c:578 ksys_write+0xe8/0x1a0 fs/read_write.c:631 __do_sys_write fs/read_write.c:643 [inline] __se_sys_write fs/read_write.c:640 [inline] __x64_sys_write+0x3e/0x50 fs/read_write.c:640 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd read to 0xffffea0004a1d2c8 of 8 bytes by task 18611 on cpu 1: page_is_pfmemalloc include/linux/mm.h:1740 [inline] __skb_fill_page_desc include/linux/skbuff.h:2422 [inline] skb_fill_page_desc include/linux/skbuff.h:2443 [inline] tcp_build_frag+0x613/0xb20 net/ipv4/tcp.c:1018 do_tcp_sendpages+0x3e8/0xaf0 net/ipv4/tcp.c:1075 tcp_sendpage_locked net/ipv4/tcp.c:1140 [inline] tcp_sendpage+0x89/0xb0 net/ipv4/tcp.c:1150 inet_sendpage+0x7f/0xc0 net/ipv4/af_inet.c:833 kernel_sendpage+0x184/0x300 net/socket.c:3561 sock_sendpage+0x5a/0x70 net/socket.c:1054 pipe_to_sendpage+0x128/0x160 fs/splice.c:361 splice_from_pipe_feed fs/splice.c:415 [inline] __splice_from_pipe+0x222/0x4d0 fs/splice.c:559 splice_from_pipe fs/splice.c:594 [inline] generic_splice_sendpage+0x89/0xc0 fs/splice.c:743 do_splice_from fs/splice.c:764 [inline] direct_splice_actor+0x80/0xa0 fs/splice.c:931 splice_direct_to_actor+0x305/0x620 fs/splice.c:886 do_splice_direct+0xfb/0x180 fs/splice.c:974 do_sendfile+0x3bf/0x910 fs/read_write.c:1249 __do_sys_sendfile64 fs/read_write.c:1317 [inline] __se_sys_sendfile64 fs/read_write.c:1303 [inline] __x64_sys_sendfile64+0x10c/0x150 fs/read_write.c:1303 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0x0000000000000000 -> 0xffffea0004a1d288 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 18611 Comm: syz-executor.4 Not tainted 6.0.0-rc2-syzkaller-00248-ge022620b5d05-dirty #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/22/2022
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: clean up hook list when offload flags check fails splice back the hook list so nft_chain_release_hook() has a chance to release the hooks. BUG: memory leak unreferenced object 0xffff88810180b100 (size 96): comm "syz-executor133", pid 3619, jiffies 4294945714 (age 12.690s) hex dump (first 32 bytes): 28 64 23 02 81 88 ff ff 28 64 23 02 81 88 ff ff (d#.....(d#..... 90 a8 aa 83 ff ff ff ff 00 00 b5 0f 81 88 ff ff ................ backtrace: [<ffffffff83a8c59b>] kmalloc include/linux/slab.h:600 [inline] [<ffffffff83a8c59b>] nft_netdev_hook_alloc+0x3b/0xc0 net/netfilter/nf_tables_api.c:1901 [<ffffffff83a9239a>] nft_chain_parse_netdev net/netfilter/nf_tables_api.c:1998 [inline] [<ffffffff83a9239a>] nft_chain_parse_hook+0x33a/0x530 net/netfilter/nf_tables_api.c:2073 [<ffffffff83a9b14b>] nf_tables_addchain.constprop.0+0x10b/0x950 net/netfilter/nf_tables_api.c:2218 [<ffffffff83a9c41b>] nf_tables_newchain+0xa8b/0xc60 net/netfilter/nf_tables_api.c:2593 [<ffffffff83a3d6a6>] nfnetlink_rcv_batch+0xa46/0xd20 net/netfilter/nfnetlink.c:517 [<ffffffff83a3db79>] nfnetlink_rcv_skb_batch net/netfilter/nfnetlink.c:638 [inline] [<ffffffff83a3db79>] nfnetlink_rcv+0x1f9/0x220 net/netfilter/nfnetlink.c:656 [<ffffffff83a13b17>] netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline] [<ffffffff83a13b17>] netlink_unicast+0x397/0x4c0 net/netlink/af_netlink.c:1345 [<ffffffff83a13fd6>] netlink_sendmsg+0x396/0x710 net/netlink/af_netlink.c:1921 [<ffffffff83865ab6>] sock_sendmsg_nosec net/socket.c:714 [inline] [<ffffffff83865ab6>] sock_sendmsg+0x56/0x80 net/socket.c:734 [<ffffffff8386601c>] ____sys_sendmsg+0x36c/0x390 net/socket.c:2482 [<ffffffff8386a918>] ___sys_sendmsg+0xa8/0x110 net/socket.c:2536 [<ffffffff8386aaa8>] __sys_sendmsg+0x88/0x100 net/socket.c:2565 [<ffffffff845e5955>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff845e5955>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 [<ffffffff84800087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
A flaw was found in qemu Media Transfer Protocol (MTP) before version 3.1.0. A path traversal in the in usb_mtp_write_data function in hw/usb/dev-mtp.c due to an improper filename sanitization. When the guest device is mounted in read-write mode, this allows to read/write arbitrary files which may lead do DoS scenario OR possibly lead to code execution on the host.
In the Linux kernel, the following vulnerability has been resolved: cgroup: cgroup_get_from_id() must check the looked-up kn is a directory cgroup has to be one kernfs dir, otherwise kernel panic is caused, especially cgroup id is provide from userspace.
An issue was discovered in kmem_cache_alloc_bulk in mm/slub.c in the Linux kernel before 5.5.11. The slowpath lacks the required TID increment, aka CID-fd4d9c7d0c71.
In the Linux kernel, the following vulnerability has been resolved: net: amd-xgbe: Fix skb data length underflow There will be BUG_ON() triggered in include/linux/skbuff.h leading to intermittent kernel panic, when the skb length underflow is detected. Fix this by dropping the packet if such length underflows are seen because of inconsistencies in the hardware descriptors.
Race condition in the ioctl_file_dedupe_range function in fs/ioctl.c in the Linux kernel through 4.7 allows local users to cause a denial of service (heap-based buffer overflow) or possibly gain privileges by changing a certain count value, aka a "double fetch" vulnerability.
A flaw possibility of race condition and incorrect initialization of the process id was found in the Linux kernel child/parent process identification handling while filtering signal handlers. A local attacker is able to abuse this flaw to bypass checks to send any signal to a privileged process.
The aufs module for the Linux kernel 3.x and 4.x does not properly restrict the mount namespace, which allows local users to gain privileges by mounting an aufs filesystem on top of a FUSE filesystem, and then executing a crafted setuid program.
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer (nvidia.ko), where an out-of-bounds array access may lead to denial of service, data tampering, or information disclosure.
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer (nvidia.ko), where an out-of-bounds array access may lead to denial of service, information disclosure, or data tampering.
An insecure modification flaw in the /etc/kubernetes/kubeconfig file was found in OpenShift. This flaw allows an attacker with access to a running container which mounts /etc/kubernetes or has local access to the node, to copy this kubeconfig file and attempt to add their own node to the OpenShift cluster. The highest threat from this vulnerability is to confidentiality, integrity, as well as system availability. This flaw affects versions before openshift4/ose-machine-config-operator v4.7.0-202105111858.p0.
In arch/x86/kvm/vmx.c in the Linux kernel before 4.17.2, when nested virtualization is used, local attackers could cause L1 KVM guests to VMEXIT, potentially allowing privilege escalations and denial of service attacks due to lack of checking of CPL.
The msm_ipc_router_bind_control_port function in net/ipc_router/ipc_router_core.c in the IPC router kernel module for the Linux kernel 3.x, as used in Qualcomm Innovation Center (QuIC) Android contributions for MSM devices and other products, does not verify that a port is a client port, which allows attackers to gain privileges or cause a denial of service (race condition and list corruption) by making many BIND_CONTROL_PORT ioctl calls.
Race condition in arch/x86/mm/tlb.c in the Linux kernel before 4.4.1 allows local users to gain privileges by triggering access to a paging structure by a different CPU.
pkexec, when used with --user nonpriv, allows local users to escape to the parent session via a crafted TIOCSTI ioctl call, which pushes characters to the terminal's input buffer.
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer (nvidia.ko), where an off-by-one error may lead to data tampering or information disclosure.
A potentially exploitable crash in TransportSecurityInfo used for SSL can be triggered by data stored in the local cache in the user profile directory. This issue is only exploitable in combination with another vulnerability allowing an attacker to write data into the local cache or from locally installed malware. This issue also triggers a non-exploitable startup crash for users switching between the Nightly and Release versions of Firefox if the same profile is used. This vulnerability affects Thunderbird < 60.2.1, Firefox ESR < 60.2.1, and Firefox < 62.0.2.
procps-ng before version 3.3.15 is vulnerable to a local privilege escalation in top. If a user runs top with HOME unset in an attacker-controlled directory, the attacker could achieve privilege escalation by exploiting one of several vulnerabilities in the config_file() function.
The Linux kernel before 5.17.2 mishandles seccomp permissions. The PTRACE_SEIZE code path allows attackers to bypass intended restrictions on setting the PT_SUSPEND_SECCOMP flag.
An issue was discovered in drivers/net/ethernet/arc/emac_main.c in the Linux kernel before 4.5. A use-after-free is caused by a race condition between the functions arc_emac_tx and arc_emac_tx_clean.
When Apache Tomcat 9.0.0.M1 to 9.0.28, 8.5.0 to 8.5.47, 7.0.0 and 7.0.97 is configured with the JMX Remote Lifecycle Listener, a local attacker without access to the Tomcat process or configuration files is able to manipulate the RMI registry to perform a man-in-the-middle attack to capture user names and passwords used to access the JMX interface. The attacker can then use these credentials to access the JMX interface and gain complete control over the Tomcat instance.
Multiple race conditions in the Advanced Union Filesystem (aufs) aufs3-mmap.patch and aufs4-mmap.patch patches for the Linux kernel 3.x and 4.x allow local users to cause a denial of service (use-after-free and BUG) or possibly gain privileges via a (1) madvise or (2) msync system call, related to mm/madvise.c and mm/msync.c.
screenresolution-mechanism in screen-resolution-extra 0.17.2 does not properly use the PolicyKit D-Bus API, which allows local users to bypass intended access restrictions by leveraging a race condition via a setuid or pkexec process that is mishandled in a PolicyKitService._check_permission call.
Multiple race conditions in drivers/char/adsprpc.c and drivers/char/adsprpc_compat.c in the ADSPRPC driver for the Linux kernel 3.x, as used in Qualcomm Innovation Center (QuIC) Android contributions for MSM devices and other products, allow attackers to cause a denial of service (zero-value write) or possibly have unspecified other impact via a COMPAT_FASTRPC_IOCTL_INVOKE_FD ioctl call.
The em_sysenter function in arch/x86/kvm/emulate.c in the Linux kernel before 3.18.5, when the guest OS lacks SYSENTER MSR initialization, allows guest OS users to gain guest OS privileges or cause a denial of service (guest OS crash) by triggering use of a 16-bit code segment for emulation of a SYSENTER instruction.
An out-of-bounds read/write access flaw was found in the USB emulator of the QEMU in versions before 5.2.0. This issue occurs while processing USB packets from a guest when USBDevice 'setup_len' exceeds its 'data_buf[4096]' in the do_token_in, do_token_out routines. This flaw allows a guest user to crash the QEMU process, resulting in a denial of service, or the potential execution of arbitrary code with the privileges of the QEMU process on the host.
automount 5.0.8, when a program map uses certain interpreted languages, uses the calling user's USER and HOME environment variable values instead of the values for the user used to run the mapped program, which allows local users to gain privileges via a Trojan horse program in the user home directory.
ppc64-diag 2.6.1 allows local users to overwrite arbitrary files via a symlink attack related to (1) rtas_errd/diag_support.c and /tmp/get_dt_files, (2) scripts/ppc64_diag_mkrsrc and /tmp/diagSEsnap/snapH.tar.gz, or (3) lpd/test/lpd_ela_test.sh and /var/tmp/ras.
Unity before 7.2.1, as used in Ubuntu 14.04, does not properly restrict access to the Dash when the lock screen is active, which allows physically proximate attackers to bypass the lock screen and execute arbitrary commands, as demonstrated by pressing the SUPER key before the screen auto-locks.
Unity before 7.2.1, as used in Ubuntu 14.04, does not properly handle keyboard shortcuts, which allows physically proximate attackers to bypass the lock screen and execute arbitrary commands, as demonstrated by right-clicking on the indicator bar and then pressing the ALT and F2 keys.
Untrusted search path vulnerability in maas-import-pxe-files in MAAS before 13.10 allows local users to execute arbitrary code via a Trojan horse import_pxe_files configuration file in the current working directory.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 10.5 and 11.1, under specific or unusual conditions, could allow a local user to overflow a buffer which may result in a privilege escalation to the DB2 instance owner. IBM X-Force ID: 141624.
A flaw was found in cri-o, where containers were incorrectly started with non-empty default permissions. A vulnerability was found in Moby (Docker Engine) where containers started incorrectly with non-empty inheritable Linux process capabilities. This flaw allows an attacker with access to programs with inheritable file capabilities to elevate those capabilities to the permitted set when execve(2) runs.
A flaw was found in the Linux Kernel where an attacker may be able to have an uncontrolled read to kernel-memory from within a vm guest. A race condition between connect() and close() function may allow an attacker using the AF_VSOCK protocol to gather a 4 byte information leak or possibly intercept or corrupt AF_VSOCK messages destined to other clients.
An integer underflow issue exists in ntfs-3g 2017.3.23. A local attacker could potentially exploit this by running /bin/ntfs-3g with specially crafted arguments from a specially crafted directory to cause a heap buffer overflow, resulting in a crash or the ability to execute arbitrary code. In installations where /bin/ntfs-3g is a setuid-root binary, this could lead to a local escalation of privileges.
In the Linux kernel through 5.16.10, certain binary files may have the exec-all attribute if they were built in approximately 2003 (e.g., with GCC 3.2.2 and Linux kernel 2.4.20). This can cause execution of bytes located in supposedly non-executable regions of a file.
Untrusted search path vulnerability in a certain Red Hat build script for the ibmssh executable in ibutils packages before ibutils-1.5.7-2.el6 in Red Hat Enterprise Linux (RHEL) 6 and ibutils-1.2-11.2.el5 in Red Hat Enterprise Linux (RHEL) 5 allows local users to gain privileges via a Trojan Horse program in refix/lib/, related to an incorrect RPATH setting in the ELF header.
Untrusted search path vulnerability in a certain Red Hat build script for OpenOffice.org (OOo) 1.1.x on Red Hat Enterprise Linux (RHEL) 3 and 4 allows local users to gain privileges via a malicious library in the current working directory, related to incorrect quoting of the ORIGIN symbol for use in the RPATH library path.
The (1) sparc_mmap_check function in arch/sparc/kernel/sys_sparc.c and the (2) sparc64_mmap_check function in arch/sparc64/kernel/sys_sparc.c, in the Linux kernel 2.4 before 2.4.36.5 and 2.6 before 2.6.25.3, omit some virtual-address range (aka span) checks when the mmap MAP_FIXED bit is not set, which allows local users to cause a denial of service (panic) via unspecified mmap calls.
The CIFS filesystem in the Linux kernel before 2.6.22, when Unix extension support is enabled, does not honor the umask of a process, which allows local users to gain privileges.
Untrusted search path vulnerability in dbmsrv in SAP MaxDB 7.6.03.15 on Linux allows local users to gain privileges via a modified PATH environment variable.