A buffer overflow vulnerability in SonicOS allows a remote attacker to cause a Denial of Service (DoS) by sending a specially crafted request. This vulnerability affects SonicOS Gen5, Gen6, Gen7 platforms, and SonicOSv virtual firewalls.
A vulnerability in SonicOS allows a remote unauthenticated attacker to cause Denial of Service due to buffer overflow, which leads to a firewall crash. This vulnerability affected SonicOS Gen 6 version 6.5.1.12, 6.0.5.3, SonicOSv 6.5.4.v and Gen 7 version 7.0.0.0.
Heap-based buffer overflow vulnerability in the SonicOS IPSec VPN allows an unauthenticated remote attacker to cause Denial of Service (DoS).
Stack-based buffer overflow vulnerability in the SonicOS HTTP server allows an authenticated remote attacker to cause Denial of Service (DoS) via sscanf function.
A Heap Overflow vulnerability in the SonicOS allows a remote unauthenticated attacker to cause Denial of Service (DoS) on the firewall SSLVPN service and leads to SonicOS crash. This vulnerability affected SonicOS Gen 5 version 5.9.1.7, 5.9.1.13, Gen 6 version 6.5.4.7, 6.5.1.12, 6.0.5.3, SonicOSv 6.5.4.v and Gen 7 version SonicOS 7.0.0.0.
SonicOS SSLVPN LDAP login request allows remote attackers to cause external service interaction (DNS) due to improper validation of the request. This vulnerability impact SonicOS version 6.5.4.4-44n and earlier.
A Stack-based buffer overflow vulnerability in the SonicOS allows a remote unauthenticated attacker to cause Denial of Service (DoS), which could cause an impacted firewall to crash.
The web server for the SonicWALL SOHO firewall allows remote attackers to cause a denial of service via a long username in the authentication page.
The web server for the SonicWALL SOHO firewall allows remote attackers to cause a denial of service via an empty GET or POST request.
A Heap-based buffer overflow vulnerability in the SMA100 series web interface allows remote, unauthenticated attacker to cause Denial of Service (DoS) or potentially results in code execution.
A Null Pointer Dereference vulnerability in the SonicOS SSLVPN Virtual office interface allows a remote, unauthenticated attacker to crash the firewall, potentially leading to a Denial-of-Service (DoS) condition.
Wind River VxWorks 6.6, 6.7, 6.8, 6.9 and vx7 has an array index error in the IGMPv3 client component. There is an IPNET security vulnerability: DoS via NULL dereference in IGMP parsing.
Wind River VxWorks 6.6 through vx7 has Session Fixation in the TCP component. This is a IPNET security vulnerability: DoS of TCP connection via malformed TCP options.
A vulnerability in SonicOS CFS (Content filtering service) returns a large 403 forbidden HTTP response message to the source address when users try to access prohibited resource this allows an attacker to cause HTTP Denial of Service (DoS) attack
Improper Restriction of TCP Communication Channel in HTTP/S inbound traffic from WAN to DMZ bypassing security policy until TCP handshake potentially resulting in Denial of Service (DoS) attack if a target host is vulnerable.
An unauthenticated and remote adversary can consume all of the device's CPU due to crafted HTTP requests sent to SMA100 /fileshare/sonicfiles/sonicfiles resulting in a loop with unreachable exit condition. This vulnerability affected SMA 200, 210, 400, 410 and 500v appliances.
A vulnerability in the SonicWall SMA1000 HTTP Extraweb server allows an unauthenticated remote attacker to cause HTTP server crash which leads to Denial of Service. This vulnerability affected SMA1000 Version 12.1.0-06411 and earlier.
A vulnerability in SonicOS SSLVPN service allows a remote unauthenticated attacker to cause Denial of Service (DoS) due to the release of Invalid pointer and leads to a firewall crash. This vulnerability affected SonicOS Gen 5 version 5.9.1.7, 5.9.1.13, Gen 6 version 6.5.4.7, 6.5.1.12, 6.0.5.3, SonicOSv 6.5.4.v and Gen 7 version SonicOS 7.0.0.0.
A vulnerability in SonicOS allows a remote unauthenticated attacker to cause Denial of Service (DoS) on the firewall SSLVPN service by sending a malicious HTTP request that leads to memory addresses leak. This vulnerability affected SonicOS Gen 5 version 5.9.1.7, 5.9.1.13, Gen 6 version 6.5.4.7, 6.5.1.12, 6.0.5.3, SonicOSv 6.5.4.v and Gen 7 version SonicOS 7.0.0.0.
A buffer overflow vulnerability in SonicOS allows a remote attacker to cause Denial of Service (DoS) and potentially execute arbitrary code by sending a malicious request to the firewall. This vulnerability affected SonicOS Gen 6 version 6.5.4.7, 6.5.1.12, 6.0.5.3, SonicOSv 6.5.4.v and Gen 7 version 7.0.0.0.
Wind River VxWorks 6.7 though 6.9 and vx7 has a Buffer Overflow in the TCP component (issue 3 of 4). This is an IPNET security vulnerability: TCP Urgent Pointer state confusion during connect() to a remote host.
Wind River VxWorks 6.9 and vx7 has a Buffer Overflow in the IPv4 component. There is an IPNET security vulnerability: Stack overflow in the parsing of IPv4 packets’ IP options.
Wind River VxWorks 6.9 and vx7 has a Buffer Overflow in the TCP component (issue 2 of 4). This is an IPNET security vulnerability: TCP Urgent Pointer state confusion caused by a malformed TCP AO option.
Wind River VxWorks 6.6 through 6.9 has a Buffer Overflow in the DHCP client component. There is an IPNET security vulnerability: Heap overflow in DHCP Offer/ACK parsing inside ipdhcpc.
Buffer overflow in SonicWall SMA100 allows an authenticated user to execute arbitrary code in DEARegister CGI script. This vulnerability impacted SMA100 version 9.0.0.3 and earlier.
Wind River VxWorks has a Buffer Overflow in the TCP component (issue 1 of 4). This is a IPNET security vulnerability: TCP Urgent Pointer = 0 that leads to an integer underflow.
A buffer overflow vulnerability in SonicOS allows an authenticated attacker to cause Denial of Service (DoS) in the SSL-VPN and virtual assist portal, which leads to a firewall crash. This vulnerability affected SonicOS Gen 5 version 5.9.1.7, 5.9.1.13, Gen 6 version 6.5.4.7, 6.5.1.12, 6.0.5.3, SonicOSv 6.5.4.v and Gen 7 version 7.0.0.0.
A buffer overflow vulnerability in the SonicWall SSL-VPN NetExtender Windows Client (32 and 64 bit) in 10.2.322 and earlier versions, allows an attacker to potentially execute arbitrary code in the host windows operating system.
A buffer overflow vulnerability in SMA100 sonicfiles RAC_COPY_TO (RacNumber 36) method allows a remote unauthenticated attacker to potentially execute code as the 'nobody' user in the appliance. This vulnerability affected SMA 200, 210, 400, 410 and 500v appliances.
A Buffer Overflow vulnerability in SIP ALG of Juniper Networks Junos OS allows a network-based, unauthenticated attacker to cause a Denial of Service (DoS). On all MX Series and SRX Series platform with SIP ALG enabled, when a malformed SIP packet is received, the flow processing daemon (flowd) will crash and restart. This issue affects: Juniper Networks Junos OS on MX Series and SRX Series 20.4 versions prior to 20.4R3-S5; 21.1 versions prior to 21.1R3-S4; 21.2 versions prior to 21.2R3-S2; 21.3 versions prior to 21.3R3-S1; 21.4 versions prior to 21.4R3; 22.1 versions prior to 22.1R1-S2, 22.1R2; 22.2 versions prior to 22.2R1-S1, 22.2R2. This issue does not affect Juniper Networks Junos OS versions prior to 20.4R1 on SRX Series.
PX4-Autopilot v1.14.3 was discovered to contain a buffer overflow via the topic_name parameter at /logger/logged_topics.cpp.
On BIG-IP versions 17.0.x before 17.0.0.2 and 16.1.x before 16.1.3.3, when a HTTP profile with the non-default Enforcement options of Enforce HTTP Compliance and Unknown Methods: Reject are configured on a virtual server, undisclosed requests can cause the Traffic Management Microkernel (TMM) to terminate. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
APNG_Optimizer v1.4 was discovered to contain a buffer overflow via the component /apngopt/ubuntu.png.
When sFlow is enabled and it monitors a packet forwarded via ECMP, a buffer management vulnerability in the dcpfe process of Juniper Networks Junos OS on QFX10K Series systems allows an attacker to cause the Packet Forwarding Engine (PFE) to crash and restart by sending specific genuine packets to the device, resulting in a Denial of Service (DoS) condition. The dcpfe process tries to copy more data into a smaller buffer, which overflows and corrupts the buffer, causing a crash of the dcpfe process. Continued receipt and processing of these packets will create a sustained Denial of Service (DoS) condition. This issue affects Juniper Networks Junos OS on QFX10K Series: All versions prior to 19.4R3-S9; 20.2 versions prior to 20.2R3-S6; 20.3 versions prior to 20.3R3-S6; 20.4 versions prior to 20.4R3-S5; 21.1 versions prior to 21.1R3-S4; 21.2 versions prior to 21.2R3-S3; 21.3 versions prior to 21.3R3-S2; 21.4 versions prior to 21.4R2-S2, 21.4R3; 22.1 versions prior to 22.1R2; 22.2 versions prior to 22.2R1-S2, 22.2R2.
The Spotify app 8.9.58 for iOS has a buffer overflow in its use of strcat.
YugabyteDB v2.21.1.0 was discovered to contain a buffer overflow via the "insert into" parameter.
A vulnerability has been found in TOTOLINK X15 1.0.0-B20230714.1105 and classified as critical. This vulnerability affects unknown code of the file /boafrm/formFilter of the component HTTP POST Request Handler. The manipulation of the argument ip6addr/url/vpnPassword/vpnUser leads to buffer overflow. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used.
Tenda FH1201 v1.2.0.14 was discovered to contain a stack-based buffer overflow vulnerability via the mitInterface parameter in ip/goform/RouteStatic
ClickHouse v24.3.3.102 was discovered to contain a buffer overflow via the component DB::evaluateConstantExpressionImpl.
Buffer Overflow vulnerability in host-host NEUQ_board v.1.0 allows a remote attacker to cause a denial of service via the password.h component.
A Stack Buffer Overflow vulnerability in zziplibv 0.13.77 allows attackers to cause a denial of service via the __zzip_fetch_disk_trailer() function at /zzip/zip.c.
An out-of-bounds memory read flaw was found in the way 389-ds-base handled certain LDAP search filters, affecting all versions including 1.4.x. A remote, unauthenticated attacker could potentially use this flaw to make ns-slapd crash via a specially crafted LDAP request, thus resulting in denial of service.
A stack overflow vulnerability was found in version 1.18.0 of rhai. The flaw position is: (/ SRC/rhai/SRC/eval/STMT. Rs in rhai: : eval: : STMT: : _ $LT $impl $u20 $rhai.. engine.. Engine$GT$::eval_stmt::h3f1d68ce37fc6e96). Due to the stack overflow is a recursive call/SRC/rhai/SRC/eval/STMT. Rs file eval_stmt_block function.
TOTOLINK AC1200 Wireless Dual Band Gigabit Router firmware A3100R V4.1.2cu.5247_B20211129, in the cgi function `setNoticeCfg` of the file `/lib/cste_modules/system.so`, the length of the user input string `NoticeUrl` is not checked. This can lead to a buffer overflow, allowing attackers to construct malicious HTTP or MQTT requests to cause a denial-of-service attack.
FlyFish v3.0.0 was discovered to contain a buffer overflow via the password parameter on the login page. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input.
libmodbus v3.1.10 is vulnerable to Buffer Overflow via the modbus_write_bits function. This issue can be triggered when the function is fed with specially crafted input, which leads to out-of-bounds read and can potentially cause a crash or other unintended behaviors.
D-Link DIR-619L 2.06B01 is vulnerable to Buffer Overflow in the formWlanSetup function via the parameter f_wds_wepKey.
wasm3 v0.5.0 was discovered to contain a global buffer overflow which leads to segmentation fault via the function "PreserveRegisterIfOccupied" in wasm3/source/m3_compile.c.
Triangle Microworks TMW IEC 61850 Client source code libraries before 12.2.0 lack a buffer size check when processing received messages. The resulting buffer overflow can cause a crash, resulting in a denial of service.
Tenda FH1206 V1.2.0.8(8155)_EN was discovered to contain a stack-based buffer overflow vulnerability via the entrys parameter in ip/goform/RouteStatic.