xmlSchemaPreRun in xmlschemas.c in libxml2 2.9.10 allows an xmlSchemaValidateStream memory leak.
Uncontrolled Resource Consumption vulnerability in the examples web application provided with Apache Tomcat leads to denial of service. This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.1, from 10.1.0-M1 through 10.1.33, from 9.0.0.M1 through 9.9.97. The following versions were EOL at the time the CVE was created but are known to be affected: 8.5.0 though 8.5.100. Other, older, EOL versions may also be affected. Users are recommended to upgrade to version 11.0.2, 10.1.34 or 9.0.98, which fixes the issue.
A vulnerability was found in RESTEasy, where RootNode incorrectly caches routes. This issue results in hash flooding, leading to slower requests with higher CPU time spent searching and adding the entry. This flaw allows an attacker to cause a denial of service.
In Lib/tarfile.py in Python through 3.8.3, an attacker is able to craft a TAR archive leading to an infinite loop when opened by tarfile.open, because _proc_pax lacks header validation.
A flaw was found in Undertow when using Remoting as shipped in Red Hat Jboss EAP before version 7.2.4. A memory leak in HttpOpenListener due to holding remote connections indefinitely may lead to denial of service. Versions before undertow 2.0.25.SP1 and jboss-remoting 5.0.14.SP1 are believed to be vulnerable.
The payload length in a WebSocket frame was not correctly validated in Apache Tomcat 10.0.0-M1 to 10.0.0-M6, 9.0.0.M1 to 9.0.36, 8.5.0 to 8.5.56 and 7.0.27 to 7.0.104. Invalid payload lengths could trigger an infinite loop. Multiple requests with invalid payload lengths could lead to a denial of service.
An h2c direct connection to Apache Tomcat 10.0.0-M1 to 10.0.0-M6, 9.0.0.M5 to 9.0.36 and 8.5.1 to 8.5.56 did not release the HTTP/1.1 processor after the upgrade to HTTP/2. If a sufficient number of such requests were made, an OutOfMemoryException could occur leading to a denial of service.
A specially crafted sequence of HTTP/2 requests sent to Apache Tomcat 10.0.0-M1 to 10.0.0-M5, 9.0.0.M1 to 9.0.35 and 8.5.0 to 8.5.55 could trigger high CPU usage for several seconds. If a sufficient number of such requests were made on concurrent HTTP/2 connections, the server could become unresponsive.
In Apache httpd 2.0.23 to 2.0.65, 2.2.0 to 2.2.34, and 2.4.0 to 2.4.29, mod_authnz_ldap, if configured with AuthLDAPCharsetConfig, uses the Accept-Language header value to lookup the right charset encoding when verifying the user's credentials. If the header value is not present in the charset conversion table, a fallback mechanism is used to truncate it to a two characters value to allow a quick retry (for example, 'en-US' is truncated to 'en'). A header value of less than two characters forces an out of bound write of one NUL byte to a memory location that is not part of the string. In the worst case, quite unlikely, the process would crash which could be used as a Denial of Service attack. In the more likely case, this memory is already reserved for future use and the issue has no effect at all.
In Apache Struts 2.5 to 2.5.14, the REST Plugin is using an outdated JSON-lib library which is vulnerable and allow perform a DoS attack using malicious request with specially crafted JSON payload.
If a resolver cache has a very large number of ECS records stored for the same name, the process of cleaning the cache database node for this name can significantly impair query performance. This issue affects BIND 9 versions 9.11.3-S1 through 9.11.37-S1, 9.16.8-S1 through 9.16.45-S1, and 9.18.11-S1 through 9.18.21-S1.
If Apache HTTP Server 2.4.53 is configured to do transformations with mod_sed in contexts where the input to mod_sed may be very large, mod_sed may make excessively large memory allocations and trigger an abort.
An issue in the Unmarshal function in Go-Yaml v3 causes the program to crash when attempting to deserialize invalid input.
libcurl provides the `CURLOPT_CERTINFO` option to allow applications torequest details to be returned about a server's certificate chain.Due to an erroneous function, a malicious server could make libcurl built withNSS get stuck in a never-ending busy-loop when trying to retrieve thatinformation.
regexp.Compile in Go before 1.16.15 and 1.17.x before 1.17.8 allows stack exhaustion via a deeply nested expression.
The package angular after 1.7.0 are vulnerable to Regular Expression Denial of Service (ReDoS) by providing a custom locale rule that makes it possible to assign the parameter in posPre: ' '.repeat() of NUMBER_FORMATS.PATTERNS[1].posPre with a very high value. **Note:** 1) This package has been deprecated and is no longer maintained. 2) The vulnerable versions are 1.7.0 and higher.
The package com.google.code.gson:gson before 2.8.9 are vulnerable to Deserialization of Untrusted Data via the writeReplace() method in internal classes, which may lead to DoS attacks.
encoding/pem in Go before 1.17.9 and 1.18.x before 1.18.1 has a Decode stack overflow via a large amount of PEM data.
In Apache ActiveMQ Artemis prior to 2.20.0 or 2.19.1, an attacker could partially disrupt availability (DoS) through uncontrolled resource consumption of memory.
StorageGRID (formerly StorageGRID Webscale) versions prior to 11.6.0 are susceptible to a vulnerability which when successfully exploited could lead to Denial of Service (DoS) of the Local Distribution Router (LDR) service.
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Lightweight HTTP Server). Supported versions that are affected are Oracle Java SE: 8u341, 8u345-perf, 11.0.16.1, 17.0.4.1, 19; Oracle GraalVM Enterprise Edition: 20.3.7, 21.3.3 and 22.2.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Libraries). Supported versions that are affected are Oracle Java SE: 7u321, 8u311, 11.0.13, 17.0.1; Oracle GraalVM Enterprise Edition: 20.3.4 and 21.3.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: 2D). Supported versions that are affected are Oracle Java SE: 7u321, 8u311; Oracle GraalVM Enterprise Edition: 20.3.4 and 21.3.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: JAXP). Supported versions that are affected are Oracle Java SE: 7u331, 8u321, 11.0.14, 17.0.2, 18; Oracle GraalVM Enterprise Edition: 20.3.5, 21.3.1 and 22.0.0.2. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Libraries). Supported versions that are affected are Oracle Java SE: 11.0.13, 17.0.1; Oracle GraalVM Enterprise Edition: 20.3.4 and 21.3.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: ImageIO). Supported versions that are affected are Oracle Java SE: 7u321, 8u311, 11.0.13, 17.0.1; Oracle GraalVM Enterprise Edition: 20.3.4 and 21.3.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: ImageIO). Supported versions that are affected are Oracle Java SE: 11.0.13, 17.0.1; Oracle GraalVM Enterprise Edition: 20.3.4 and 21.3.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: ImageIO). Supported versions that are affected are Oracle Java SE: 11.0.13, 17.0.1; Oracle GraalVM Enterprise Edition: 20.3.4 and 21.3.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Libraries). Supported versions that are affected are Oracle Java SE: 7u321, 8u311, 11.0.13, 17.0.1; Oracle GraalVM Enterprise Edition: 20.3.4 and 21.3.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: JAXP). Supported versions that are affected are Oracle Java SE: 7u321, 8u311, 11.0.13, 17.0.1; Oracle GraalVM Enterprise Edition: 20.3.4 and 21.3.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Libraries). Supported versions that are affected are Oracle Java SE: 7u321, 8u311, 11.0.13, 17.0.1; Oracle GraalVM Enterprise Edition: 20.3.4 and 21.3.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: ImageIO). Supported versions that are affected are Oracle Java SE: 7u321, 8u311, 11.0.13, 17.0.1; Oracle GraalVM Enterprise Edition: 20.3.4 and 21.3.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Serialization). Supported versions that are affected are Oracle Java SE: 7u321, 8u311, 11.0.13, 17.0.1; Oracle GraalVM Enterprise Edition: 20.3.4 and 21.3.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
In Eclipse Jetty HTTP/2 server implementation, when encountering an invalid HTTP/2 request, the error handling has a bug that can wind up not properly cleaning up the active connections and associated resources. This can lead to a Denial of Service scenario where there are no enough resources left to process good requests.
An issue was discovered in the Linux Kernel from 4.18 to 4.19, an improper update of sock reference in TCP pacing can lead to memory/netns leak, which can be used by remote clients.
The OPENSSL_LH_flush() function, which empties a hash table, contains a bug that breaks reuse of the memory occuppied by the removed hash table entries. This function is used when decoding certificates or keys. If a long lived process periodically decodes certificates or keys its memory usage will expand without bounds and the process might be terminated by the operating system causing a denial of service. Also traversing the empty hash table entries will take increasingly more time. Typically such long lived processes might be TLS clients or TLS servers configured to accept client certificate authentication. The function was added in the OpenSSL 3.0 version thus older releases are not affected by the issue. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2).
The BN_mod_sqrt() function, which computes a modular square root, contains a bug that can cause it to loop forever for non-prime moduli. Internally this function is used when parsing certificates that contain elliptic curve public keys in compressed form or explicit elliptic curve parameters with a base point encoded in compressed form. It is possible to trigger the infinite loop by crafting a certificate that has invalid explicit curve parameters. Since certificate parsing happens prior to verification of the certificate signature, any process that parses an externally supplied certificate may thus be subject to a denial of service attack. The infinite loop can also be reached when parsing crafted private keys as they can contain explicit elliptic curve parameters. Thus vulnerable situations include: - TLS clients consuming server certificates - TLS servers consuming client certificates - Hosting providers taking certificates or private keys from customers - Certificate authorities parsing certification requests from subscribers - Anything else which parses ASN.1 elliptic curve parameters Also any other applications that use the BN_mod_sqrt() where the attacker can control the parameter values are vulnerable to this DoS issue. In the OpenSSL 1.0.2 version the public key is not parsed during initial parsing of the certificate which makes it slightly harder to trigger the infinite loop. However any operation which requires the public key from the certificate will trigger the infinite loop. In particular the attacker can use a self-signed certificate to trigger the loop during verification of the certificate signature. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0. It was addressed in the releases of 1.1.1n and 3.0.2 on the 15th March 2022. Fixed in OpenSSL 3.0.2 (Affected 3.0.0,3.0.1). Fixed in OpenSSL 1.1.1n (Affected 1.1.1-1.1.1m). Fixed in OpenSSL 1.0.2zd (Affected 1.0.2-1.0.2zc).
When the vulnerability is triggered the BIND process will exit. BIND 9.18.0
Versions affected: BIND 9.18.0 When a vulnerable version of named receives a series of specific queries, the named process will eventually terminate due to a failed assertion check.
BIND 9.16.11 -> 9.16.26, 9.17.0 -> 9.18.0 and versions 9.16.11-S1 -> 9.16.26-S1 of the BIND Supported Preview Edition. Specifically crafted TCP streams can cause connections to BIND to remain in CLOSE_WAIT status for an indefinite period of time, even after the client has terminated the connection.
net/http in Go before 1.16.12 and 1.17.x before 1.17.5 allows uncontrolled memory consumption in the header canonicalization cache via HTTP/2 requests.
GNU Multiple Precision Arithmetic Library (GMP) through 6.2.1 has an mpz/inp_raw.c integer overflow and resultant buffer overflow via crafted input, leading to a segmentation fault on 32-bit platforms.
While fuzzing the 2.4.49 httpd, a new null pointer dereference was detected during HTTP/2 request processing, allowing an external source to DoS the server. This requires a specially crafted request. The vulnerability was recently introduced in version 2.4.49. No exploit is known to the project.
The fix for bug 63362 present in Apache Tomcat 10.1.0-M1 to 10.1.0-M5, 10.0.0-M1 to 10.0.11, 9.0.40 to 9.0.53 and 8.5.60 to 8.5.71 introduced a memory leak. The object introduced to collect metrics for HTTP upgrade connections was not released for WebSocket connections once the connection was closed. This created a memory leak that, over time, could lead to a denial of service via an OutOfMemoryError.
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Libraries). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Networking). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144; JRockit: R28.3.15. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Internally libssl in OpenSSL calls X509_verify_cert() on the client side to verify a certificate supplied by a server. That function may return a negative return value to indicate an internal error (for example out of memory). Such a negative return value is mishandled by OpenSSL and will cause an IO function (such as SSL_connect() or SSL_do_handshake()) to not indicate success and a subsequent call to SSL_get_error() to return the value SSL_ERROR_WANT_RETRY_VERIFY. This return value is only supposed to be returned by OpenSSL if the application has previously called SSL_CTX_set_cert_verify_callback(). Since most applications do not do this the SSL_ERROR_WANT_RETRY_VERIFY return value from SSL_get_error() will be totally unexpected and applications may not behave correctly as a result. The exact behaviour will depend on the application but it could result in crashes, infinite loops or other similar incorrect responses. This issue is made more serious in combination with a separate bug in OpenSSL 3.0 that will cause X509_verify_cert() to indicate an internal error when processing a certificate chain. This will occur where a certificate does not include the Subject Alternative Name extension but where a Certificate Authority has enforced name constraints. This issue can occur even with valid chains. By combining the two issues an attacker could induce incorrect, application dependent behaviour. Fixed in OpenSSL 3.0.1 (Affected 3.0.0).
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: JAXP). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: 2D). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).