A Server-Side Request Forgery (SSRF) vulnerability in the EPPUpdateService component of Bitdefender Endpoint Security Tools allows an attacker to proxy requests to the relay server. This issue affects: Bitdefender Bitdefender GravityZone versions prior to 3.3.8.272
A Server-Side Request Forgery (SSRF) vulnerability in the EPPUpdateService of Bitdefender Endpoint Security Tools allows an attacker to use the Endpoint Protection relay as a proxy for any remote host. This issue affects: Bitdefender Endpoint Security Tools versions prior to 6.6.27.390; versions prior to 7.1.2.33. Bitdefender Unified Endpoint for Linux versions prior to 6.2.21.160. Bitdefender GravityZone versions prior to 6.24.1-1.
Multiple directory traversal vulnerabilities in Bitdefender GravityZone before 5.1.11.432 allow remote attackers to read arbitrary files via a (1) .. (dot dot) in the id parameter to webservice/CORE/downloadFullKitEpc/a/1 in the Web Console or (2) %2E%2E (encoded dot dot) in the default URI to port 7074 on the Update Server.
Insufficient validation in the Bitdefender Update Server and BEST Relay components of Bitdefender Endpoint Security Tools versions prior to 6.6.20.294 allows an unprivileged attacker to bypass the in-place mitigations and interact with hosts on the network. This issue affects: Bitdefender Update Server versions prior to 6.6.20.294.
A server-side request forgery (SSRF) vulnerability exists in the Bitdefender GravityZone Update Server when operating in Relay Mode. The HTTP proxy component on port 7074 uses a domain allowlist to restrict outbound requests, but fails to properly sanitize hostnames containing null-byte (%00) sequences. By crafting a request to a domain such as evil.com%00.bitdefender.com, an attacker can bypass the allowlist check, causing the proxy to forward requests to arbitrary external or internal systems.
A server-side request forgery (SSRF) vulnerability in Bitdefender GravityZone Console allows an attacker to bypass input validation logic using leading characters in DNS requests. Paired with other potential vulnerabilities, this bypass could be used for execution of third party code. This issue affects GravityZone Console: before 6.41.2.1.
A verbose error handling issue in the proxy service implemented in the GravityZone Update Server allows an attacker to cause a server-side request forgery. This issue only affects GravityZone Console versions before 6.38.1-5 running only on premise.
A host whitelist parser issue in the proxy service implemented in the GravityZone Update Server allows an attacker to cause a server-side request forgery. This issue only affects GravityZone Console versions before 6.38.1-2 that are running only on premise.
Server-Side Request Forgery (SSRF) vulnerability in Apache HugeGraph-Hubble.This issue affects Apache HugeGraph-Hubble: from 1.0.0 before 1.3.0. Users are recommended to upgrade to version 1.3.0, which fixes the issue.
A remote unauthenticated attacker can abuse a web service in SAP NetWeaver Application Server for Java (Administrator System Overview), versions 7.30, 7.31, 7.40, 7.50, by sending a specially crafted XML file and trick the application server into leaking authentication credentials for its own SAP Management console, resulting in Server-Side Request Forgery.
A Server-Side Request Forgery vulnerability in DELMIA Apriso Release 2017 through Release 2022 could allow an unauthenticated attacker to issue requests to arbitrary hosts on behalf of the server running the DELMIA Apriso application.
GroupViewProxyServlet in RoomWizard before 4.4.x allows SSRF via the url parameter.
Sentry is an error tracking and performance monitoring platform. Sentry’s integration platform provides a way for external services to interact with Sentry. One of such integrations, the Phabricator integration (maintained by Sentry) with version <=24.1.1 contains a constrained SSRF vulnerability. An attacker could make Sentry send POST HTTP requests to arbitrary URLs (including internal IP addresses) by providing an unsanitized input to the Phabricator integration. However, the body payload is constrained to a specific format. If an attacker has access to a Sentry instance, this allows them to: 1. interact with internal network; 2. scan local/remote ports. This issue has been fixed in Sentry self-hosted release 24.1.2, and has already been mitigated on sentry.io on February 8. Users are advised to upgrade. There are no known workarounds for this vulnerability.
The copy function in application/admin/controller/Article.php in NoneCms 1.3.0 allows remote attackers to access the content of internal and external network resources via Server Side Request Forgery (SSRF), because URL validation only considers whether the URL contains the "csdn" substring.
An issue in Ladder v.0.0.1 thru v.0.0.21 allows a remote attacker to obtain sensitive information via a crafted request to the API.
Adobe Experience Manager versions 6.2 and 6.3 have a Server-Side Request Forgery vulnerability. Successful exploitation could lead to sensitive information disclosure.
Adobe Experience Manager versions 6.4 and earlier have a Server-Side Request Forgery vulnerability. Successful exploitation could lead to sensitive information disclosure.
The Omni Commerce Connect API (OCC) of SAP Hybris Commerce, versions 6.*, is vulnerable to server-side request forgery (SSRF) attacks. This is due to a misconfiguration of XML parser that is used in the server-side implementation of OCC.
TrueLayer.NET is the .Net client for TrueLayer. The vulnerability could potentially allow a malicious actor to gain control over the destination URL of the HttpClient used in the API classes. For applications using the SDK, requests to unexpected resources on local networks or to the internet could be made which could lead to information disclosure. The issue can be mitigated by having strict egress rules limiting the destinations to which requests can be made, and applying strict validation to any user input passed to the `truelayer-dotnet` library. Versions of TrueLayer.Client `v1.6.0` and later are not affected.
In JetBrains TeamCity before 2020.2.3, information disclosure via SSRF was possible.
Tuta is an encrypted email service. In versions prior to 119.10, an attacker can attach an image in a html mail which is loaded from external resource in the default setting, which should prevent loading of external resources. When displaying emails containing external content, they should be loaded by default only after confirmation by the user. However, it could be recognized that certain embedded images (see PoC) are loaded, even though the "Automatic Reloading of Images" function is disabled by default. The reloading is also done unencrypted via HTTP and redirections are followed. This behavior is unexpected for the user, since the user assumes that external content will only be loaded after explicit manual confirmation. The loading of external content in e-mails represents a risk, because this makes the sender aware that the e-mail address is used, when the e-mail was read, which device is used and expose the user's IP address. Version 119.10 contains a patch for this issue.
In JetBrains TeamCity between 2022.10 and 2022.10.1 a custom STS endpoint allowed internal port scanning.
A Blind SSRF vulnerability exists in the "Crawl Meta Data" functionality of SEO Panel version 4.10.0. This makes it possible for remote attackers to scan ports in the local environment.
GPT Academic version 3.83 is vulnerable to a Server-Side Request Forgery (SSRF) vulnerability through its HotReload plugin function, which calls the crazy_utils.get_files_from_everything() API without proper sanitization. This allows attackers to exploit the vulnerability to abuse the victim GPT Academic's Gradio Web server's credentials to access unauthorized web resources.
D-Tale is a visualizer for Pandas data structures. Users hosting versions D-Tale prior to 3.9.0 publicly can be vulnerable to server-side request forgery (SSRF), allowing attackers to access files on the server. Users should upgrade to version 3.9.0, where the `Load From the Web` input is turned off by default. The only workaround for versions earlier than 3.9.0 is to only host D-Tale to trusted users.
All versions of the package github.com/greenpau/caddy-security are vulnerable to Server-side Request Forgery (SSRF) via X-Forwarded-Host header manipulation. An attacker can expose sensitive information, interact with internal services, or exploit other vulnerabilities within the network by exploiting this vulnerability.
CWE-918: Server-Side Request Forgery (SSRF) vulnerability exists that could cause unauthorized access to sensitive data when an attacker sends a specially crafted document to a vulnerable endpoint.
Cursor is a code editor built for programming with AI. In versions below 1.3, Mermaid (which is used to render diagrams) allows embedding images which then get rendered by Cursor in the chat box. An attacker can use this to exfiltrate sensitive information to a third-party attacker controlled server through an image fetch after successfully performing a prompt injection. A malicious model (or hallucination/backdoor) might also trigger this exploit at will. This issue requires prompt injection from malicious data (web, image upload, source code) in order to exploit. In that case, it can send sensitive information to an attacker-controlled external server. This is fixed in version 1.3.
The Starter Templates by FancyWP plugin for WordPress is vulnerable to Blind Server-Side Request Forgery in all versions up to, and including, 2.0.0 via the 'http_request_host_is_external' filter. This makes it possible for unauthenticated attackers to make web requests to arbitrary locations originating from the web application and can be used to query and modify information from internal services.
The Platform.ly for WooCommerce plugin for WordPress is vulnerable to Blind Server-Side Request Forgery in all versions up to, and including, 1.1.6 via the 'hooks' function. This makes it possible for unauthenticated attackers to make web requests to arbitrary locations originating from the web application and can be used to query and modify information from internal services.
Some Dahua software products have a vulnerability of server-side request forgery (SSRF). An Attacker can access internal resources by concatenating links (URL) that conform to specific rules.
The GeoAnalytics feature in Qlik Sense April 2020 patch 4 allows SSRF.
CWE-918: Server-Side Request Forgery (SSRF) vulnerability exists that could cause unauthorized access to sensitive data when an attacker configures the application to access a malicious url.
A vulnerability in the web-based management interface of Cisco Finesse could allow an unauthenticated, remote attacker to conduct an SSRF attack on an affected system. This vulnerability is due to insufficient validation of user-supplied input for specific HTTP requests that are sent to an affected system. An attacker could exploit this vulnerability by sending a crafted HTTP request to the affected device. A successful exploit could allow the attacker to obtain limited sensitive information for services that are associated to the affected device.
The OneStore Sites plugin for WordPress is vulnerable to Server-Side Request Forgery in all versions up to, and including, 0.1.1 via the class-export.php file. This makes it possible for unauthenticated attackers to make web requests to arbitrary locations originating from the web application and can be used to query and modify information from internal services.
Server-Side Request Forgery (SSRF) vulnerability in Salesforce Tableau Server on Windows, Linux (EPS Server modules) allows Resource Location Spoofing. This issue affects Tableau Server: before 2025.1.3, before 2024.2.12, before 2023.3.19.
A Server-Side Request Forgery (SSRF) vulnerability exists in infiniflow/ragflow version 0.12.0. The vulnerability is present in the `POST /v1/llm/add_llm` and `POST /v1/conversation/tts` endpoints. Attackers can specify an arbitrary URL as the `api_base` when adding an `OPENAITTS` model, and subsequently access the `tts` REST API endpoint to read contents from the specified URL. This can lead to unauthorized access to internal web resources.
Server-Side Request Forgery (SSRF) vulnerability in Salesforce Tableau Server on Windows, Linux (Amazon S3 Connector modules) allows Resource Location Spoofing. This issue affects Tableau Server: before 2025.1.3, before 2024.2.12, before 2023.3.19.
Server-Side Request Forgery vulnerability in Haivision's Aviwest Manager and Aviwest Steamhub. This vulnerability could allow an attacker to enumerate internal network configuration without the need for credentials. An attacker could compromise an internal server and retrieve requests sent by other users.
There is a server-side request forgery vulnerability in HUAWEI P40 versions 10.1.0.118(C00E116R3P3). This vulnerability is due to insufficient validation of parameters while dealing with some messages. A successful exploit could allow the attacker to gain access to certain resource which the attacker are supposed not to do.
langgenius/dify version 0.9.1 contains a Server-Side Request Forgery (SSRF) vulnerability. The vulnerability exists due to improper handling of the api_endpoint parameter, allowing an attacker to make direct requests to internal network services. This can lead to unauthorized access to internal servers and potentially expose sensitive information, including access to the AWS metadata endpoint.
In version 3.83 of binary-husky/gpt_academic, a Server-Side Request Forgery (SSRF) vulnerability exists in the Markdown_Translate.get_files_from_everything() API. This vulnerability is exploited through the HotReload(Markdown翻译中) plugin function, which allows downloading arbitrary web hosts by only checking if the link starts with 'http'. Attackers can exploit this vulnerability to abuse the victim GPT Academic's Gradio Web server's credentials to access unauthorized web resources.
Server-Side Request Forgery (SSRF) vulnerability in PhonePe PhonePe Payment Solutions.This issue affects PhonePe Payment Solutions: from n/a through 1.0.15.
Appwrite <= v1.4.13 is affected by a Server-Side Request Forgery (SSRF) via the '/v1/avatars/favicon' endpoint due to an incomplete fix of CVE-2023-27159.
ControlID iDSecure On-premises versions 4.7.48.0 and prior are vulnerable to a server-side request forgery vulnerability which could allow an unauthenticated attacker to retrieve information from other servers.
The affected product may allow an attacker to identify and forge requests to internal systems by way of a specially crafted request.
The inclusion of the web scraper for AnythingLLM means that any user with the proper authorization level (manager, admin, and when in single user) could put in the URL ``` http://169.254.169.254/latest/meta-data/identity-credentials/ec2/security-credentials/ec2-instance ``` which is a special IP and URL that resolves only when the request comes from within an EC2 instance. This would allow the user to see the connection/secret credentials for their specific instance and be able to manage it regardless of who deployed it. The user would have to have pre-existing knowledge of the hosting infra which the target instance is deployed on, but if sent - would resolve if on EC2 and the proper `iptable` or firewall rule is not configured for their setup.
Server-Side Request Forgery (SSRF) vulnerability in cgi component in Synology Media Server before 1.8.3-2881 allows remote attackers to access intranet resources via unspecified vectors.
Server-Side Request Forgery (SSRF) in Microsoft Power Apps allows an unauthorized attacker to disclose information over a network
AutoGPT is a platform that allows users to create, deploy, and manage continuous artificial intelligence agents that automate complex workflows. Prior to 0.6.1, AutoGPT allows SSRF due to DNS Rebinding in requests wrapper. AutoGPT is built with a wrapper around Python's requests library, hardening the application against SSRF. The code for this wrapper can be found in autogpt_platform/backend/backend/util/request.py. The requested hostname of a URL which is being requested is validated, ensuring that it does not resolve to any local ipv4 or ipv6 addresses. However, this check is not sufficient, as a DNS server may initially respond with a non-blocked address, with a TTL of 0. This means that the initial resolution would appear as a non-blocked address. In this case, validate_url() will return the url as successful. After validate_url() has successfully returned the url, the url is then passed to the real request() function. When the real request() function is called with the validated url, request() will once again resolve the address of the hostname, because the record will not have been cached (due to TTL 0). This resolution may be in the "invalid range". This type of attack is called a "DNS Rebinding Attack". This vulnerability is fixed in 0.6.1.