Expr is an expression language and expression evaluation for Go. Prior to version 1.17.7, several builtin functions in Expr, including `flatten`, `min`, `max`, `mean`, and `median`, perform recursive traversal over user-provided data structures without enforcing a maximum recursion depth. If the evaluation environment contains deeply nested or cyclic data structures, these functions may recurse indefinitely until exceed the Go runtime stack limit. This results in a stack overflow panic, causing the host application to crash. While exploitability depends on whether an attacker can influence or inject cyclic or pathologically deep data into the evaluation environment, this behavior represents a denial-of-service (DoS) risk and affects overall library robustness. Instead of returning a recoverable evaluation error, the process may terminate unexpectedly. In affected versions, evaluation of expressions that invoke certain builtin functions on untrusted or insufficiently validated data structures can lead to a process-level crash due to stack exhaustion. This issue is most relevant in scenarios where Expr is used to evaluate expressions against externally supplied or dynamically constructed environments; cyclic references (directly or indirectly) can be introduced into arrays, maps, or structs; and there are no application-level safeguards preventing deeply nested input data. In typical use cases with controlled, acyclic data, the issue may not manifest. However, when present, the resulting panic can be used to reliably crash the application, constituting a denial of service. The issue has been fixed in the v1.17.7 versions of Expr. The patch introduces a maximum recursion depth limit for affected builtin functions. When this limit is exceeded, evaluation aborts gracefully and returns a descriptive error instead of panicking. Additionally, the maximum depth can be customized by users via `builtin.MaxDepth`, allowing applications with legitimate deep structures to raise the limit in a controlled manner. Users are strongly encouraged to upgrade to the patched release, which includes both the recursion guard and comprehensive test coverage to prevent regressions. For users who cannot immediately upgrade, some mitigations are recommended. Ensure that evaluation environments cannot contain cyclic references, validate or sanitize externally supplied data structures before passing them to Expr, and/or wrap expression evaluation with panic recovery to prevent a full process crash (as a last-resort defensive measure). These workarounds reduce risk but do not fully eliminate the issue without the patch.
Bitcoin Core before 0.20.0 allows remote attackers to cause a denial of service (infinite loop) via a malformed GETDATA message.
Bitcoin Core before 0.15.0 allows a denial of service (OOM kill of a daemon process) via a flood of minimum difficulty headers.
Synapse is an open-source Matrix homeserver. In Synapse before 1.120.1, multipart/form-data requests can in certain configurations transiently increase memory consumption beyond expected levels while processing the request, which can be used to amplify denial of service attacks. Synapse 1.120.1 resolves the issue by denying requests with unsupported multipart/form-data content type.
If a server hosts a zone containing a "KEY" Resource Record, or a resolver DNSSEC-validates a "KEY" Resource Record from a DNSSEC-signed domain in cache, a client can exhaust resolver CPU resources by sending a stream of SIG(0) signed requests. This issue affects BIND 9 versions 9.0.0 through 9.11.37, 9.16.0 through 9.16.50, 9.18.0 through 9.18.27, 9.19.0 through 9.19.24, 9.9.3-S1 through 9.11.37-S1, 9.16.8-S1 through 9.16.49-S1, and 9.18.11-S1 through 9.18.27-S1.
Opencast is free and open source software for automated video capture and distribution. First noticed in Opencast 13 and 14, Opencast's Elasticsearch integration may generate syntactically invalid Elasticsearch queries in relation to previously acceptable search queries. From Opencast version 11.4 and newer, Elasticsearch queries are retried a configurable number of times in the case of error to handle temporary losses of connection to Elasticsearch. These invalid queries would fail, causing the retry mechanism to begin requerying with the same syntactically invalid query immediately, in an infinite loop. This causes a massive increase in log size which can in some cases cause a denial of service due to disk exhaustion. Opencast 13.10 and Opencast 14.3 contain patches which address the base issue, with Opencast 16.7 containing changes which harmonize the search behaviour between the admin UI and external API. Users are strongly recommended to upgrade as soon as possible if running versions prior to 13.10 or 14.3. While the relevant endpoints require (by default) `ROLE_ADMIN` or `ROLE_API_SERIES_VIEW`, the problem queries are otherwise innocuous. This issue could be easily triggered by normal administrative work on an affected Opencast system. Those who run a version newer than 13.10 and 14.3 and see different results when searching in their admin UI vs your external API or LMS, may resolve the issue by upgrading to 16.7. No known workarounds for the vulnerability are available.
Cloudflare Quiche (through version 0.19.1/0.20.0) was affected by an unlimited resource allocation vulnerability causing rapid increase of memory usage of the system running quiche server or client. A remote attacker could take advantage of this vulnerability by repeatedly sending an unlimited number of 1-RTT CRYPTO frames after previously completing the QUIC handshake. Exploitation was possible for the duration of the connection which could be extended by the attacker. quiche 0.19.2 and 0.20.1 are the earliest versions containing the fix for this issue.
An issue has been discovered affecting service availability via issue preview in GitLab CE/EE affecting all versions from 16.7 before 17.9.7, 17.10 before 17.10.5, and 17.11 before 17.11.1.
Allocation of Resources Without Limits or Throttling in GitHub repository ikus060/rdiffweb prior to 2.4.8.
In version 3.25.0 of aimhubio/aim, the tracking server is vulnerable to a denial of service attack. The server overrides the maximum size for websocket messages, allowing very large images to be tracked. This causes the server to become unresponsive to other requests while processing the large image, leading to a denial of service condition.
Resolver caches and authoritative zone databases that hold significant numbers of RRs for the same hostname (of any RTYPE) can suffer from degraded performance as content is being added or updated, and also when handling client queries for this name. This issue affects BIND 9 versions 9.11.0 through 9.11.37, 9.16.0 through 9.16.50, 9.18.0 through 9.18.27, 9.19.0 through 9.19.24, 9.11.4-S1 through 9.11.37-S1, 9.16.8-S1 through 9.16.50-S1, and 9.18.11-S1 through 9.18.27-S1.
<bytes::Bytes as axum_core::extract::FromRequest>::from_request would not, by default, set a limit for the size of the request body. That meant if a malicious peer would send a very large (or infinite) body your server might run out of memory and crash. This also applies to these extractors which used Bytes::from_request internally: axum::extract::Form axum::extract::Json String
An issue in Espressif Esp idf v5.3.0 allows attackers to cause a Denial of Service (DoS) via a crafted data channel packet.
An issue was discovered in GitLab CE/EE affecting all versions starting from 13.6 prior to 17.2.9, starting from 17.3 prior to 17.3.5, and starting from 17.4 prior to 17.4.2, where viewing diffs of MR with conflicts can be slow.
UltraVNC Viewer 1.2.4.0 contains a denial of service vulnerability that allows attackers to crash the application by manipulating VNC Server input. Attackers can generate a malformed 256-byte payload and paste it into the VNC Server connection dialog to trigger an application crash.
An issue in how XINJE XD5E-24R and XL5E-16T v3.5.3b handles TCP protocol messages allows attackers to cause a Denial of Service (DoS) via a crafted TCP message.
Discourse is the an open source discussion platform. In affected versions an email activation route can be abused to send mass spam emails. A fix has been included in the latest stable, beta and tests-passed versions of Discourse which rate limits emails. Users are advised to upgrade. Users unable to upgrade should manually rate limit email.
Hyperium Hyper before 0.14.19 does not allow for customization of the max_header_list_size method in the H2 third-party software, allowing attackers to perform HTTP2 attacks.
If Apache HTTP Server 2.4.53 is configured to do transformations with mod_sed in contexts where the input to mod_sed may be very large, mod_sed may make excessively large memory allocations and trigger an abort.
An issue has been discovered in GitLab CE/EE affecting all versions starting from 17.1 prior to 17.9.8, from 17.10 prior to 17.10.6, and from 17.11 prior to 17.11.2. It was possible to cause a DoS condition via GitHub import requests using a malicious crafted payload.
A lack of rate limiting in the 'forgot password' feature of Zammad v5.1.0 allows attackers to send an excessive amount of reset requests for a legitimate user, leading to a possible Denial of Service (DoS) via a large amount of generated e-mail messages.
OPC UA .NET Standard Stack 1.04.368 allows remote attacker to cause a crash via a crafted message that triggers excessive memory allocation.
A Denial-of-Service (DoS) vulnerability was discovered in F-Secure Atlant whereby the fsicapd component used in certain F-Secure products while scanning larger packages/fuzzed files consume too much memory eventually can crash the scanning engine. The exploit can be triggered remotely by an attacker.
Reader.Read does not set a limit on the maximum size of file headers. A maliciously crafted archive could cause Read to allocate unbounded amounts of memory, potentially causing resource exhaustion or panics. After fix, Reader.Read limits the maximum size of header blocks to 1 MiB.
The ZlibDecoders in Netty 4.1.x before 4.1.46 allow for unbounded memory allocation while decoding a ZlibEncoded byte stream. An attacker could send a large ZlibEncoded byte stream to the Netty server, forcing the server to allocate all of its free memory to a single decoder.
A flaw was discovered in Undertow in versions before Undertow 2.1.1.Final where certain requests to the "Expect: 100-continue" header may cause an out of memory error. This flaw may potentially lead to a denial of service.
The SSH daemon on MikroTik routers through v6.44.3 could allow remote attackers to generate CPU activity, trigger refusal of new authorized connections, and cause a reboot via connect and write system calls, because of uncontrolled resource management.
Pexip Infinity 27 before 28.0 allows remote attackers to trigger excessive resource consumption and termination because of registrar resource mishandling.
A vulnerability in gaizhenbiao/chuanhuchatgpt version 20240628 allows for a Denial of Service (DOS) attack. When uploading a file, if an attacker appends a large number of characters to the end of a multipart boundary, the system will continuously process each character, rendering ChuanhuChatGPT inaccessible. This uncontrolled resource consumption can lead to prolonged unavailability of the service, disrupting operations and causing potential data inaccessibility and loss of productivity.
An issue has been discovered in GitLab CE/EE affecting all versions from 11.6 before 17.10.7, 17.11 before 17.11.3, and 18.0 before 18.0.1. A Discord webhook integration may cause DoS.
The mikecao/flight PHP framework in versions prior to v1.2 is vulnerable to Denial of Service (DoS) attacks due to eager loading of request bodies in the Request class constructor. The framework automatically reads the entire request body on every HTTP request, regardless of whether the application needs it. An attacker can exploit this by sending requests with large payloads, causing excessive memory consumption and potentially exhausting available server memory, leading to application crashes or service unavailability. The vulnerability was fixed in v1.2 by implementing lazy loading of request bodies.
Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both.
In version 0.3.32 of open-webui/open-webui, the absence of authentication mechanisms allows any unauthenticated attacker to access the `api/v1/utils/code/format` endpoint. If a malicious actor sends a POST request with an excessively high volume of content, the server could become completely unresponsive. This could lead to severe performance issues, causing the server to become unresponsive or experience significant degradation, ultimately resulting in service interruptions for legitimate users.
Clients using DNS-over-HTTPS (DoH) can exhaust a DNS resolver's CPU and/or memory by flooding it with crafted valid or invalid HTTP/2 traffic. This issue affects BIND 9 versions 9.18.0 through 9.18.32, 9.20.0 through 9.20.4, 9.21.0 through 9.21.3, and 9.18.11-S1 through 9.18.32-S1.
Starting in Python 3.12.0, the asyncio._SelectorSocketTransport.writelines() method would not "pause" writing and signal to the Protocol to drain the buffer to the wire once the write buffer reached the "high-water mark". Because of this, Protocols would not periodically drain the write buffer potentially leading to memory exhaustion. This vulnerability likely impacts a small number of users, you must be using Python 3.12.0 or later, on macOS or Linux, using the asyncio module with protocols, and using .writelines() method which had new zero-copy-on-write behavior in Python 3.12.0 and later. If not all of these factors are true then your usage of Python is unaffected.
Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both.
Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
Fileszie Check vulnerabilities allow a malicious user to bypass size limits or overload to the product. Affected products: ABB ASPECT - Enterprise v3.08.02; NEXUS Series v3.08.02; MATRIX Series v3.08.02
In Apache HTTP Server 2.4.53 and earlier, a malicious request to a lua script that calls r:parsebody(0) may cause a denial of service due to no default limit on possible input size.
In vm-superio before 0.1.1, the serial console FIFO can grow to unlimited memory usage when data is sent to the input source (i.e., standard input). This behavior cannot be reproduced from the guest side. When no rate limiting is in place, the host can be subject to memory pressure, impacting all other VMs running on the same host.
A vulnerability in ollama/ollama <=0.3.14 allows a malicious user to create a customized GGUF model file, upload it to the Ollama server, and create it. This can cause the server to allocate unlimited memory, leading to a Denial of Service (DoS) attack.
An allocation of resources without limits or throttling vulnerability [CWE-770] in FortiOS versions 7.4.0 through 7.4.4, versions 7.2.0 through 7.2.8, versions 7.0.0 through 7.0.15, and versions 6.4.0 through 6.4.15 may allow an unauthenticated remote user to consume all system memory via multiple large file uploads.
A vulnerability, which was classified as problematic, has been found in Tongda OA 2017 up to 11.7. This issue affects some unknown processing of the file /inc/package_static_resources.php. The manipulation leads to resource consumption. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
Werkzeug is a Web Server Gateway Interface web application library. Applications using `werkzeug.formparser.MultiPartParser` corresponding to a version of Werkzeug prior to 3.0.6 to parse `multipart/form-data` requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. Werkzeug version 3.0.6 fixes this issue.
In FreeBSD 12.0-STABLE before r349197 and 12.0-RELEASE before 12.0-RELEASE-p6, a bug in the non-default RACK TCP stack can allow an attacker to cause several linked lists to grow unbounded and cause an expensive list traversal on every packet being processed, leading to resource exhaustion and a denial of service.
There is a possible denial of service vulnerability in Action View (Rails) <5.2.2.1, <5.1.6.2, <5.0.7.2, <4.2.11.1 where specially crafted accept headers can cause action view to consume 100% cpu and make the server unresponsive.
An exploitable denial-of-service vulnerability exists in the Weave daemon of the Nest Cam IQ Indoor, version 4620002. A set of TCP connections can cause unrestricted resource allocation, resulting in a denial of service. An attacker can connect multiple times to trigger this vulnerability.
IBM WebSphere Application Server 7.0, 8.0, 8.5, and 9.0 is vulnerable to a denial of service, caused by sending a specially-crafted request. A remote attacker could exploit this vulnerability to cause the server to consume all available memory. IBM X-Force ID: 172125.
An issue was discovered in Django 5.1 before 5.1.5, 5.0 before 5.0.11, and 4.2 before 4.2.18. Lack of upper-bound limit enforcement in strings passed when performing IPv6 validation could lead to a potential denial-of-service attack. The undocumented and private functions clean_ipv6_address and is_valid_ipv6_address are vulnerable, as is the django.forms.GenericIPAddressField form field. (The django.db.models.GenericIPAddressField model field is not affected.)
An issue in the Instructor Appointment Availability module of eSoft Planner 3.24.08271-USA allows attackers to cause a Denial of Service (DoS) via a crafted POST request.