In the Linux kernel, the following vulnerability has been resolved: netfilter: ipset: fix performance regression in swap operation The patch "netfilter: ipset: fix race condition between swap/destroy and kernel side add/del/test", commit 28628fa9 fixes a race condition. But the synchronize_rcu() added to the swap function unnecessarily slows it down: it can safely be moved to destroy and use call_rcu() instead. Eric Dumazet pointed out that simply calling the destroy functions as rcu callback does not work: sets with timeout use garbage collectors which need cancelling at destroy which can wait. Therefore the destroy functions are split into two: cancelling garbage collectors safely at executing the command received by netlink and moving the remaining part only into the rcu callback.
In the Linux kernel, the following vulnerability has been resolved: configfs: fix a race in configfs_{,un}register_subsystem() When configfs_register_subsystem() or configfs_unregister_subsystem() is executing link_group() or unlink_group(), it is possible that two processes add or delete list concurrently. Some unfortunate interleavings of them can cause kernel panic. One of cases is: A --> B --> C --> D A <-- B <-- C <-- D delete list_head *B | delete list_head *C --------------------------------|----------------------------------- configfs_unregister_subsystem | configfs_unregister_subsystem unlink_group | unlink_group unlink_obj | unlink_obj list_del_init | list_del_init __list_del_entry | __list_del_entry __list_del | __list_del // next == C | next->prev = prev | | next->prev = prev prev->next = next | | // prev == B | prev->next = next Fix this by adding mutex when calling link_group() or unlink_group(), but parent configfs_subsystem is NULL when config_item is root. So I create a mutex configfs_subsystem_mutex.
A race condition was found in the Linux kernel's media/dvb-core in dvbdmx_write() function. This can result in a null pointer dereference issue, possibly leading to a kernel panic or denial of service issue.
In the Linux kernel, the following vulnerability has been resolved: ip: Fix data-races around sysctl_ip_prot_sock. sysctl_ip_prot_sock is accessed concurrently, and there is always a chance of data-race. So, all readers and writers need some basic protection to avoid load/store-tearing.
In the Linux kernel, the following vulnerability has been resolved: fscache: Fix oops due to race with cookie_lru and use_cookie If a cookie expires from the LRU and the LRU_DISCARD flag is set, but the state machine has not run yet, it's possible another thread can call fscache_use_cookie and begin to use it. When the cookie_worker finally runs, it will see the LRU_DISCARD flag set, transition the cookie->state to LRU_DISCARDING, which will then withdraw the cookie. Once the cookie is withdrawn the object is removed the below oops will occur because the object associated with the cookie is now NULL. Fix the oops by clearing the LRU_DISCARD bit if another thread uses the cookie before the cookie_worker runs. BUG: kernel NULL pointer dereference, address: 0000000000000008 ... CPU: 31 PID: 44773 Comm: kworker/u130:1 Tainted: G E 6.0.0-5.dneg.x86_64 #1 Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022 Workqueue: events_unbound netfs_rreq_write_to_cache_work [netfs] RIP: 0010:cachefiles_prepare_write+0x28/0x90 [cachefiles] ... Call Trace: netfs_rreq_write_to_cache_work+0x11c/0x320 [netfs] process_one_work+0x217/0x3e0 worker_thread+0x4a/0x3b0 kthread+0xd6/0x100
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_early_retrans. While reading sysctl_tcp_early_retrans, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_min_snd_mss. While reading sysctl_tcp_min_snd_mss, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
A race condition was found in the Linux kernel's sound/hda device driver in snd_hdac_regmap_sync() function. This can result in a null pointer dereference issue, possibly leading to a kernel panic or denial of service issue.
A race condition accessing file object in the Linux kernel OverlayFS subsystem was found in the way users do rename in specific way with OverlayFS. A local user could use this flaw to crash the system.
A race condition was found in the Linux kernel's drm/exynos device driver in exynos_drm_crtc_atomic_disable() function. This can result in a null pointer dereference issue, possibly leading to a kernel panic or denial of service issue.
In the Linux kernel, the following vulnerability has been resolved: nbd: fix race between nbd_alloc_config() and module removal When nbd module is being removing, nbd_alloc_config() may be called concurrently by nbd_genl_connect(), although try_module_get() will return false, but nbd_alloc_config() doesn't handle it. The race may lead to the leak of nbd_config and its related resources (e.g, recv_workq) and oops in nbd_read_stat() due to the unload of nbd module as shown below: BUG: kernel NULL pointer dereference, address: 0000000000000040 Oops: 0000 [#1] SMP PTI CPU: 5 PID: 13840 Comm: kworker/u17:33 Not tainted 5.14.0+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Workqueue: knbd16-recv recv_work [nbd] RIP: 0010:nbd_read_stat.cold+0x130/0x1a4 [nbd] Call Trace: recv_work+0x3b/0xb0 [nbd] process_one_work+0x1ed/0x390 worker_thread+0x4a/0x3d0 kthread+0x12a/0x150 ret_from_fork+0x22/0x30 Fixing it by checking the return value of try_module_get() in nbd_alloc_config(). As nbd_alloc_config() may return ERR_PTR(-ENODEV), assign nbd->config only when nbd_alloc_config() succeeds to ensure the value of nbd->config is binary (valid or NULL). Also adding a debug message to check the reference counter of nbd_config during module removal.
In the Linux kernel, the following vulnerability has been resolved: igmp: Fix data-races around sysctl_igmp_llm_reports. While reading sysctl_igmp_llm_reports, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. This test can be packed into a helper, so such changes will be in the follow-up series after net is merged into net-next. if (ipv4_is_local_multicast(pmc->multiaddr) && !READ_ONCE(net->ipv4.sysctl_igmp_llm_reports))
In the Linux kernel, the following vulnerability has been resolved: ice: fix concurrent reset and removal of VFs Commit c503e63200c6 ("ice: Stop processing VF messages during teardown") introduced a driver state flag, ICE_VF_DEINIT_IN_PROGRESS, which is intended to prevent some issues with concurrently handling messages from VFs while tearing down the VFs. This change was motivated by crashes caused while tearing down and bringing up VFs in rapid succession. It turns out that the fix actually introduces issues with the VF driver caused because the PF no longer responds to any messages sent by the VF during its .remove routine. This results in the VF potentially removing its DMA memory before the PF has shut down the device queues. Additionally, the fix doesn't actually resolve concurrency issues within the ice driver. It is possible for a VF to initiate a reset just prior to the ice driver removing VFs. This can result in the remove task concurrently operating while the VF is being reset. This results in similar memory corruption and panics purportedly fixed by that commit. Fix this concurrency at its root by protecting both the reset and removal flows using the existing VF cfg_lock. This ensures that we cannot remove the VF while any outstanding critical tasks such as a virtchnl message or a reset are occurring. This locking change also fixes the root cause originally fixed by commit c503e63200c6 ("ice: Stop processing VF messages during teardown"), so we can simply revert it. Note that I kept these two changes together because simply reverting the original commit alone would leave the driver vulnerable to worse race conditions.
In the Linux kernel, the following vulnerability has been resolved: gpio: aggregator: protect driver attr handlers against module unload Both new_device_store and delete_device_store touch module global resources (e.g. gpio_aggregator_lock). To prevent race conditions with module unload, a reference needs to be held. Add try_module_get() in these handlers. For new_device_store, this eliminates what appears to be the most dangerous scenario: if an id is allocated from gpio_aggregator_idr but platform_device_register has not yet been called or completed, a concurrent module unload could fail to unregister/delete the device, leaving behind a dangling platform device/GPIO forwarder. This can result in various issues. The following simple reproducer demonstrates these problems: #!/bin/bash while :; do # note: whether 'gpiochip0 0' exists or not does not matter. echo 'gpiochip0 0' > /sys/bus/platform/drivers/gpio-aggregator/new_device done & while :; do modprobe gpio-aggregator modprobe -r gpio-aggregator done & wait Starting with the following warning, several kinds of warnings will appear and the system may become unstable: ------------[ cut here ]------------ list_del corruption, ffff888103e2e980->next is LIST_POISON1 (dead000000000100) WARNING: CPU: 1 PID: 1327 at lib/list_debug.c:56 __list_del_entry_valid_or_report+0xa3/0x120 [...] RIP: 0010:__list_del_entry_valid_or_report+0xa3/0x120 [...] Call Trace: <TASK> ? __list_del_entry_valid_or_report+0xa3/0x120 ? __warn.cold+0x93/0xf2 ? __list_del_entry_valid_or_report+0xa3/0x120 ? report_bug+0xe6/0x170 ? __irq_work_queue_local+0x39/0xe0 ? handle_bug+0x58/0x90 ? exc_invalid_op+0x13/0x60 ? asm_exc_invalid_op+0x16/0x20 ? __list_del_entry_valid_or_report+0xa3/0x120 gpiod_remove_lookup_table+0x22/0x60 new_device_store+0x315/0x350 [gpio_aggregator] kernfs_fop_write_iter+0x137/0x1f0 vfs_write+0x262/0x430 ksys_write+0x60/0xd0 do_syscall_64+0x6c/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e [...] </TASK> ---[ end trace 0000000000000000 ]---
In the Linux kernel, the following vulnerability has been resolved: mm: revert "mm: shmem: fix data-race in shmem_getattr()" Revert d949d1d14fa2 ("mm: shmem: fix data-race in shmem_getattr()") as suggested by Chuck [1]. It is causing deadlocks when accessing tmpfs over NFS. As Hugh commented, "added just to silence a syzbot sanitizer splat: added where there has never been any practical problem".
In the Linux kernel, the following vulnerability has been resolved: accel/ivpu: Prevent recovery invocation during probe and resume Refactor IPC send and receive functions to allow correct handling of operations that should not trigger a recovery process. Expose ivpu_send_receive_internal(), which is now utilized by the D0i3 entry, DCT initialization, and HWS initialization functions. These functions have been modified to return error codes gracefully, rather than initiating recovery. The updated functions are invoked within ivpu_probe() and ivpu_resume(), ensuring that any errors encountered during these stages result in a proper teardown or shutdown sequence. The previous approach of triggering recovery within these functions could lead to a race condition, potentially causing undefined behavior and kernel crashes due to null pointer dereferences.
In the Linux kernel, the following vulnerability has been resolved: iommu/arm-smmu: Defer probe of clients after smmu device bound Null pointer dereference occurs due to a race between smmu driver probe and client driver probe, when of_dma_configure() for client is called after the iommu_device_register() for smmu driver probe has executed but before the driver_bound() for smmu driver has been called. Following is how the race occurs: T1:Smmu device probe T2: Client device probe really_probe() arm_smmu_device_probe() iommu_device_register() really_probe() platform_dma_configure() of_dma_configure() of_dma_configure_id() of_iommu_configure() iommu_probe_device() iommu_init_device() arm_smmu_probe_device() arm_smmu_get_by_fwnode() driver_find_device_by_fwnode() driver_find_device() next_device() klist_next() /* null ptr assigned to smmu */ /* null ptr dereference while smmu->streamid_mask */ driver_bound() klist_add_tail() When this null smmu pointer is dereferenced later in arm_smmu_probe_device, the device crashes. Fix this by deferring the probe of the client device until the smmu device has bound to the arm smmu driver. [will: Add comment]
In the Linux kernel, the following vulnerability has been resolved: sched/fair: Fix fault in reweight_entity Syzbot found a GPF in reweight_entity. This has been bisected to commit 4ef0c5c6b5ba ("kernel/sched: Fix sched_fork() access an invalid sched_task_group") There is a race between sched_post_fork() and setpriority(PRIO_PGRP) within a thread group that causes a null-ptr-deref in reweight_entity() in CFS. The scenario is that the main process spawns number of new threads, which then call setpriority(PRIO_PGRP, 0, -20), wait, and exit. For each of the new threads the copy_process() gets invoked, which adds the new task_struct and calls sched_post_fork() for it. In the above scenario there is a possibility that setpriority(PRIO_PGRP) and set_one_prio() will be called for a thread in the group that is just being created by copy_process(), and for which the sched_post_fork() has not been executed yet. This will trigger a null pointer dereference in reweight_entity(), as it will try to access the run queue pointer, which hasn't been set. Before the mentioned change the cfs_rq pointer for the task has been set in sched_fork(), which is called much earlier in copy_process(), before the new task is added to the thread_group. Now it is done in the sched_post_fork(), which is called after that. To fix the issue the remove the update_load param from the update_load param() function and call reweight_task() only if the task flag doesn't have the TASK_NEW flag set.
In the Linux kernel, the following vulnerability has been resolved: mm/sparsemem: fix race in accessing memory_section->usage The below race is observed on a PFN which falls into the device memory region with the system memory configuration where PFN's are such that [ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL]. Since normal zone start and end pfn contains the device memory PFN's as well, the compaction triggered will try on the device memory PFN's too though they end up in NOP(because pfn_to_online_page() returns NULL for ZONE_DEVICE memory sections). When from other core, the section mappings are being removed for the ZONE_DEVICE region, that the PFN in question belongs to, on which compaction is currently being operated is resulting into the kernel crash with CONFIG_SPASEMEM_VMEMAP enabled. The crash logs can be seen at [1]. compact_zone() memunmap_pages ------------- --------------- __pageblock_pfn_to_page ...... (a)pfn_valid(): valid_section()//return true (b)__remove_pages()-> sparse_remove_section()-> section_deactivate(): [Free the array ms->usage and set ms->usage = NULL] pfn_section_valid() [Access ms->usage which is NULL] NOTE: From the above it can be said that the race is reduced to between the pfn_valid()/pfn_section_valid() and the section deactivate with SPASEMEM_VMEMAP enabled. The commit b943f045a9af("mm/sparse: fix kernel crash with pfn_section_valid check") tried to address the same problem by clearing the SECTION_HAS_MEM_MAP with the expectation of valid_section() returns false thus ms->usage is not accessed. Fix this issue by the below steps: a) Clear SECTION_HAS_MEM_MAP before freeing the ->usage. b) RCU protected read side critical section will either return NULL when SECTION_HAS_MEM_MAP is cleared or can successfully access ->usage. c) Free the ->usage with kfree_rcu() and set ms->usage = NULL. No attempt will be made to access ->usage after this as the SECTION_HAS_MEM_MAP is cleared thus valid_section() return false. Thanks to David/Pavan for their inputs on this patch. [1] https://lore.kernel.org/linux-mm/994410bb-89aa-d987-1f50-f514903c55aa@quicinc.com/ On Snapdragon SoC, with the mentioned memory configuration of PFN's as [ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL], we are able to see bunch of issues daily while testing on a device farm. For this particular issue below is the log. Though the below log is not directly pointing to the pfn_section_valid(){ ms->usage;}, when we loaded this dump on T32 lauterbach tool, it is pointing. [ 540.578056] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 540.578068] Mem abort info: [ 540.578070] ESR = 0x0000000096000005 [ 540.578073] EC = 0x25: DABT (current EL), IL = 32 bits [ 540.578077] SET = 0, FnV = 0 [ 540.578080] EA = 0, S1PTW = 0 [ 540.578082] FSC = 0x05: level 1 translation fault [ 540.578085] Data abort info: [ 540.578086] ISV = 0, ISS = 0x00000005 [ 540.578088] CM = 0, WnR = 0 [ 540.579431] pstate: 82400005 (Nzcv daif +PAN -UAO +TCO -DIT -SSBSBTYPE=--) [ 540.579436] pc : __pageblock_pfn_to_page+0x6c/0x14c [ 540.579454] lr : compact_zone+0x994/0x1058 [ 540.579460] sp : ffffffc03579b510 [ 540.579463] x29: ffffffc03579b510 x28: 0000000000235800 x27:000000000000000c [ 540.579470] x26: 0000000000235c00 x25: 0000000000000068 x24:ffffffc03579b640 [ 540.579477] x23: 0000000000000001 x22: ffffffc03579b660 x21:0000000000000000 [ 540.579483] x20: 0000000000235bff x19: ffffffdebf7e3940 x18:ffffffdebf66d140 [ 540.579489] x17: 00000000739ba063 x16: 00000000739ba063 x15:00000000009f4bff [ 540.579495] x14: 0000008000000000 x13: 0000000000000000 x12:0000000000000001 [ 540.579501] x11: 0000000000000000 x10: 0000000000000000 x9 :ffffff897d2cd440 [ 540.579507] x8 : 0000000000000000 x7 : 0000000000000000 x6 :ffffffc03579b5b4 [ 540.579512] x5 : 0000000000027f25 x4 : ffffffc03579b5b8 x3 :0000000000000 ---truncated---
In the Linux kernel, the following vulnerability has been resolved: KVM: s390: vsie: fix race during shadow creation Right now it is possible to see gmap->private being zero in kvm_s390_vsie_gmap_notifier resulting in a crash. This is due to the fact that we add gmap->private == kvm after creation: static int acquire_gmap_shadow(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { [...] gmap = gmap_shadow(vcpu->arch.gmap, asce, edat); if (IS_ERR(gmap)) return PTR_ERR(gmap); gmap->private = vcpu->kvm; Let children inherit the private field of the parent.
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix racing issue between ufshcd_mcq_abort() and ISR If command timeout happens and cq complete IRQ is raised at the same time, ufshcd_mcq_abort clears lprb->cmd and a NULL pointer deref happens in the ISR. Error log: ufshcd_abort: Device abort task at tag 18 Unable to handle kernel NULL pointer dereference at virtual address 0000000000000108 pc : [0xffffffe27ef867ac] scsi_dma_unmap+0xc/0x44 lr : [0xffffffe27f1b898c] ufshcd_release_scsi_cmd+0x24/0x114
In the Linux kernel, the following vulnerability has been resolved: pmdomain: mediatek: fix race conditions with genpd If the power domains are registered first with genpd and *after that* the driver attempts to power them on in the probe sequence, then it is possible that a race condition occurs if genpd tries to power them on in the same time. The same is valid for powering them off before unregistering them from genpd. Attempt to fix race conditions by first removing the domains from genpd and *after that* powering down domains. Also first power up the domains and *after that* register them to genpd.
In the Linux kernel, the following vulnerability has been resolved: l2tp: close all race conditions in l2tp_tunnel_register() The code in l2tp_tunnel_register() is racy in several ways: 1. It modifies the tunnel socket _after_ publishing it. 2. It calls setup_udp_tunnel_sock() on an existing socket without locking. 3. It changes sock lock class on fly, which triggers many syzbot reports. This patch amends all of them by moving socket initialization code before publishing and under sock lock. As suggested by Jakub, the l2tp lockdep class is not necessary as we can just switch to bh_lock_sock_nested().
In the Linux kernel, the following vulnerability has been resolved: media: rkisp1: Fix IRQ disable race issue In rkisp1_isp_stop() and rkisp1_csi_disable() the driver masks the interrupts and then apparently assumes that the interrupt handler won't be running, and proceeds in the stop procedure. This is not the case, as the interrupt handler can already be running, which would lead to the ISP being disabled while the interrupt handler handling a captured frame. This brings up two issues: 1) the ISP could be powered off while the interrupt handler is still running and accessing registers, leading to board lockup, and 2) the interrupt handler code and the code that disables the streaming might do things that conflict. It is not clear to me if 2) causes a real issue, but 1) can be seen with a suitable delay (or printk in my case) in the interrupt handler, leading to board lockup.
In the Linux kernel, the following vulnerability has been resolved: spi: Fix null dereference on suspend A race condition exists where a synchronous (noqueue) transfer can be active during a system suspend. This can cause a null pointer dereference exception to occur when the system resumes. Example order of events leading to the exception: 1. spi_sync() calls __spi_transfer_message_noqueue() which sets ctlr->cur_msg 2. Spi transfer begins via spi_transfer_one_message() 3. System is suspended interrupting the transfer context 4. System is resumed 6. spi_controller_resume() calls spi_start_queue() which resets cur_msg to NULL 7. Spi transfer context resumes and spi_finalize_current_message() is called which dereferences cur_msg (which is now NULL) Wait for synchronous transfers to complete before suspending by acquiring the bus mutex and setting/checking a suspend flag.
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix type confusion via race condition when using ipc_msg_send_request req->handle is allocated using ksmbd_acquire_id(&ipc_ida), based on ida_alloc. req->handle from ksmbd_ipc_login_request and FSCTL_PIPE_TRANSCEIVE ioctl can be same and it could lead to type confusion between messages, resulting in access to unexpected parts of memory after an incorrect delivery. ksmbd check type of ipc response but missing add continue to check next ipc reponse.
An issue was discovered in do_madvise in mm/madvise.c in the Linux kernel before 5.6.8. There is a race condition between coredump operations and the IORING_OP_MADVISE implementation, aka CID-bc0c4d1e176e.
roccat_report_event in drivers/hid/hid-roccat.c in the Linux kernel through 5.19.12 has a race condition and resultant use-after-free in certain situations where a report is received while copying a report->value is in progress.
An issue was discovered in the Linux kernel through 5.19.8. drivers/firmware/efi/capsule-loader.c has a race condition with a resultant use-after-free.
In the Linux kernel, the following vulnerability has been resolved: net: fix data-races around sk->sk_forward_alloc Syzkaller reported this warning: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 16 at net/ipv4/af_inet.c:156 inet_sock_destruct+0x1c5/0x1e0 Modules linked in: CPU: 0 UID: 0 PID: 16 Comm: ksoftirqd/0 Not tainted 6.12.0-rc5 #26 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:inet_sock_destruct+0x1c5/0x1e0 Code: 24 12 4c 89 e2 5b 48 c7 c7 98 ec bb 82 41 5c e9 d1 18 17 ff 4c 89 e6 5b 48 c7 c7 d0 ec bb 82 41 5c e9 bf 18 17 ff 0f 0b eb 83 <0f> 0b eb 97 0f 0b eb 87 0f 0b e9 68 ff ff ff 66 66 2e 0f 1f 84 00 RSP: 0018:ffffc9000008bd90 EFLAGS: 00010206 RAX: 0000000000000300 RBX: ffff88810b172a90 RCX: 0000000000000007 RDX: 0000000000000002 RSI: 0000000000000300 RDI: ffff88810b172a00 RBP: ffff88810b172a00 R08: ffff888104273c00 R09: 0000000000100007 R10: 0000000000020000 R11: 0000000000000006 R12: ffff88810b172a00 R13: 0000000000000004 R14: 0000000000000000 R15: ffff888237c31f78 FS: 0000000000000000(0000) GS:ffff888237c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffc63fecac8 CR3: 000000000342e000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __warn+0x88/0x130 ? inet_sock_destruct+0x1c5/0x1e0 ? report_bug+0x18e/0x1a0 ? handle_bug+0x53/0x90 ? exc_invalid_op+0x18/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? inet_sock_destruct+0x1c5/0x1e0 __sk_destruct+0x2a/0x200 rcu_do_batch+0x1aa/0x530 ? rcu_do_batch+0x13b/0x530 rcu_core+0x159/0x2f0 handle_softirqs+0xd3/0x2b0 ? __pfx_smpboot_thread_fn+0x10/0x10 run_ksoftirqd+0x25/0x30 smpboot_thread_fn+0xdd/0x1d0 kthread+0xd3/0x100 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x34/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> ---[ end trace 0000000000000000 ]--- Its possible that two threads call tcp_v6_do_rcv()/sk_forward_alloc_add() concurrently when sk->sk_state == TCP_LISTEN with sk->sk_lock unlocked, which triggers a data-race around sk->sk_forward_alloc: tcp_v6_rcv tcp_v6_do_rcv skb_clone_and_charge_r sk_rmem_schedule __sk_mem_schedule sk_forward_alloc_add() skb_set_owner_r sk_mem_charge sk_forward_alloc_add() __kfree_skb skb_release_all skb_release_head_state sock_rfree sk_mem_uncharge sk_forward_alloc_add() sk_mem_reclaim // set local var reclaimable __sk_mem_reclaim sk_forward_alloc_add() In this syzkaller testcase, two threads call tcp_v6_do_rcv() with skb->truesize=768, the sk_forward_alloc changes like this: (cpu 1) | (cpu 2) | sk_forward_alloc ... | ... | 0 __sk_mem_schedule() | | +4096 = 4096 | __sk_mem_schedule() | +4096 = 8192 sk_mem_charge() | | -768 = 7424 | sk_mem_charge() | -768 = 6656 ... | ... | sk_mem_uncharge() | | +768 = 7424 reclaimable=7424 | | | sk_mem_uncharge() | +768 = 8192 | reclaimable=8192 | __sk_mem_reclaim() | | -4096 = 4096 | __sk_mem_reclaim() | -8192 = -4096 != 0 The skb_clone_and_charge_r() should not be called in tcp_v6_do_rcv() when sk->sk_state is TCP_LISTEN, it happens later in tcp_v6_syn_recv_sock(). Fix the same issue in dccp_v6_do_rcv().
An issue was discovered in the Linux kernel through 5.9.1, as used with Xen through 4.14.x. drivers/xen/events/events_base.c allows event-channel removal during the event-handling loop (a race condition). This can cause a use-after-free or NULL pointer dereference, as demonstrated by a dom0 crash via events for an in-reconfiguration paravirtualized device, aka CID-073d0552ead5.
An issue was discovered in include/asm-generic/tlb.h in the Linux kernel before 5.19. Because of a race condition (unmap_mapping_range versus munmap), a device driver can free a page while it still has stale TLB entries. This only occurs in situations with VM_PFNMAP VMAs.
Race condition in the ext4_file_write_iter function in fs/ext4/file.c in the Linux kernel through 3.17 allows local users to cause a denial of service (file unavailability) via a combination of a write action and an F_SETFL fcntl operation for the O_DIRECT flag.
Race condition in the __kvm_migrate_pit_timer function in arch/x86/kvm/i8254.c in the KVM subsystem in the Linux kernel through 3.17.2 allows guest OS users to cause a denial of service (host OS crash) by leveraging incorrect PIT emulation.
A flaw was found in pfn_swap_entry_to_page in memory management subsystem in the Linux Kernel. In this flaw, an attacker with a local user privilege may cause a denial of service problem due to a BUG statement referencing pmd_t x.
In the Linux kernel, the following vulnerability has been resolved: vfs: fix race between evice_inodes() and find_inode()&iput() Hi, all Recently I noticed a bug[1] in btrfs, after digged it into and I believe it'a race in vfs. Let's assume there's a inode (ie ino 261) with i_count 1 is called by iput(), and there's a concurrent thread calling generic_shutdown_super(). cpu0: cpu1: iput() // i_count is 1 ->spin_lock(inode) ->dec i_count to 0 ->iput_final() generic_shutdown_super() ->__inode_add_lru() ->evict_inodes() // cause some reason[2] ->if (atomic_read(inode->i_count)) continue; // return before // inode 261 passed the above check // list_lru_add_obj() // and then schedule out ->spin_unlock() // note here: the inode 261 // was still at sb list and hash list, // and I_FREEING|I_WILL_FREE was not been set btrfs_iget() // after some function calls ->find_inode() // found the above inode 261 ->spin_lock(inode) // check I_FREEING|I_WILL_FREE // and passed ->__iget() ->spin_unlock(inode) // schedule back ->spin_lock(inode) // check (I_NEW|I_FREEING|I_WILL_FREE) flags, // passed and set I_FREEING iput() ->spin_unlock(inode) ->spin_lock(inode) ->evict() // dec i_count to 0 ->iput_final() ->spin_unlock() ->evict() Now, we have two threads simultaneously evicting the same inode, which may trigger the BUG(inode->i_state & I_CLEAR) statement both within clear_inode() and iput(). To fix the bug, recheck the inode->i_count after holding i_lock. Because in the most scenarios, the first check is valid, and the overhead of spin_lock() can be reduced. If there is any misunderstanding, please let me know, thanks. [1]: https://lore.kernel.org/linux-btrfs/000000000000eabe1d0619c48986@google.com/ [2]: The reason might be 1. SB_ACTIVE was removed or 2. mapping_shrinkable() return false when I reproduced the bug.
A flaw was found in the Netfilter subsystem of the Linux kernel. A race condition between IPSET_CMD_ADD and IPSET_CMD_SWAP can lead to a kernel panic due to the invocation of `__ip_set_put` on a wrong `set`. This issue may allow a local user to crash the system.
In the Linux kernel, the following vulnerability has been resolved: f2fs: compress: fix race condition of overwrite vs truncate pos_fsstress testcase complains a panic as belew: ------------[ cut here ]------------ kernel BUG at fs/f2fs/compress.c:1082! invalid opcode: 0000 [#1] SMP PTI CPU: 4 PID: 2753477 Comm: kworker/u16:2 Tainted: G OE 5.12.0-rc1-custom #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014 Workqueue: writeback wb_workfn (flush-252:16) RIP: 0010:prepare_compress_overwrite+0x4c0/0x760 [f2fs] Call Trace: f2fs_prepare_compress_overwrite+0x5f/0x80 [f2fs] f2fs_write_cache_pages+0x468/0x8a0 [f2fs] f2fs_write_data_pages+0x2a4/0x2f0 [f2fs] do_writepages+0x38/0xc0 __writeback_single_inode+0x44/0x2a0 writeback_sb_inodes+0x223/0x4d0 __writeback_inodes_wb+0x56/0xf0 wb_writeback+0x1dd/0x290 wb_workfn+0x309/0x500 process_one_work+0x220/0x3c0 worker_thread+0x53/0x420 kthread+0x12f/0x150 ret_from_fork+0x22/0x30 The root cause is truncate() may race with overwrite as below, so that one reference count left in page can not guarantee the page attaching in mapping tree all the time, after truncation, later find_lock_page() may return NULL pointer. - prepare_compress_overwrite - f2fs_pagecache_get_page - unlock_page - f2fs_setattr - truncate_setsize - truncate_inode_page - delete_from_page_cache - find_lock_page Fix this by avoiding referencing updated page.
In the Linux kernel, the following vulnerability has been resolved: tracing/timerlat: Fix a race during cpuhp processing There is another found exception that the "timerlat/1" thread was scheduled on CPU0, and lead to timer corruption finally: ``` ODEBUG: init active (active state 0) object: ffff888237c2e108 object type: hrtimer hint: timerlat_irq+0x0/0x220 WARNING: CPU: 0 PID: 426 at lib/debugobjects.c:518 debug_print_object+0x7d/0xb0 Modules linked in: CPU: 0 UID: 0 PID: 426 Comm: timerlat/1 Not tainted 6.11.0-rc7+ #45 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 RIP: 0010:debug_print_object+0x7d/0xb0 ... Call Trace: <TASK> ? __warn+0x7c/0x110 ? debug_print_object+0x7d/0xb0 ? report_bug+0xf1/0x1d0 ? prb_read_valid+0x17/0x20 ? handle_bug+0x3f/0x70 ? exc_invalid_op+0x13/0x60 ? asm_exc_invalid_op+0x16/0x20 ? debug_print_object+0x7d/0xb0 ? debug_print_object+0x7d/0xb0 ? __pfx_timerlat_irq+0x10/0x10 __debug_object_init+0x110/0x150 hrtimer_init+0x1d/0x60 timerlat_main+0xab/0x2d0 ? __pfx_timerlat_main+0x10/0x10 kthread+0xb7/0xe0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2d/0x40 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> ``` After tracing the scheduling event, it was discovered that the migration of the "timerlat/1" thread was performed during thread creation. Further analysis confirmed that it is because the CPU online processing for osnoise is implemented through workers, which is asynchronous with the offline processing. When the worker was scheduled to create a thread, the CPU may has already been removed from the cpu_online_mask during the offline process, resulting in the inability to select the right CPU: T1 | T2 [CPUHP_ONLINE] | cpu_device_down() osnoise_hotplug_workfn() | | cpus_write_lock() | takedown_cpu(1) | cpus_write_unlock() [CPUHP_OFFLINE] | cpus_read_lock() | start_kthread(1) | cpus_read_unlock() | To fix this, skip online processing if the CPU is already offline.
A race condition flaw was found in the Linux kernel sound subsystem due to improper locking. It could lead to a NULL pointer dereference while handling the SNDCTL_DSP_SYNC ioctl. A privileged local user (root or member of the audio group) could use this flaw to crash the system, resulting in a denial of service condition
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Disable DMCUB timeout for DCN35 [Why] DMCUB can intermittently take longer than expected to process commands. Old ASIC policy was to continue while logging a diagnostic error - which works fine for ASIC without IPS, but with IPS this could lead to a race condition where we attempt to access DCN state while it's inaccessible, leading to a system hang when the NIU port is not disabled or register accesses that timeout and the display configuration in an undefined state. [How] We need to investigate why these accesses take longer than expected, but for now we should disable the timeout on DCN35 to avoid this race condition. Since the waits happen only at lower interrupt levels the risk of taking too long at higher IRQ and causing a system watchdog timeout are minimal.
In the Linux kernel, the following vulnerability has been resolved: ALSA: line6: Fix racy access to midibuf There can be concurrent accesses to line6 midibuf from both the URB completion callback and the rawmidi API access. This could be a cause of KMSAN warning triggered by syzkaller below (so put as reported-by here). This patch protects the midibuf call of the former code path with a spinlock for avoiding the possible races.
In the Linux kernel, the following vulnerability has been resolved: nvme: tcp: avoid race between queue_lock lock and destroy Commit 76d54bf20cdc ("nvme-tcp: don't access released socket during error recovery") added a mutex_lock() call for the queue->queue_lock in nvme_tcp_get_address(). However, the mutex_lock() races with mutex_destroy() in nvme_tcp_free_queue(), and causes the WARN below. DEBUG_LOCKS_WARN_ON(lock->magic != lock) WARNING: CPU: 3 PID: 34077 at kernel/locking/mutex.c:587 __mutex_lock+0xcf0/0x1220 Modules linked in: nvmet_tcp nvmet nvme_tcp nvme_fabrics iw_cm ib_cm ib_core pktcdvd nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables qrtr sunrpc ppdev 9pnet_virtio 9pnet pcspkr netfs parport_pc parport e1000 i2c_piix4 i2c_smbus loop fuse nfnetlink zram bochs drm_vram_helper drm_ttm_helper ttm drm_kms_helper xfs drm sym53c8xx floppy nvme scsi_transport_spi nvme_core nvme_auth serio_raw ata_generic pata_acpi dm_multipath qemu_fw_cfg [last unloaded: ib_uverbs] CPU: 3 UID: 0 PID: 34077 Comm: udisksd Not tainted 6.11.0-rc7 #319 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:__mutex_lock+0xcf0/0x1220 Code: 08 84 d2 0f 85 c8 04 00 00 8b 15 ef b6 c8 01 85 d2 0f 85 78 f4 ff ff 48 c7 c6 20 93 ee af 48 c7 c7 60 91 ee af e8 f0 a7 6d fd <0f> 0b e9 5e f4 ff ff 48 b8 00 00 00 00 00 fc ff df 4c 89 f2 48 c1 RSP: 0018:ffff88811305f760 EFLAGS: 00010286 RAX: 0000000000000000 RBX: ffff88812c652058 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000001 RBP: ffff88811305f8b0 R08: 0000000000000001 R09: ffffed1075c36341 R10: ffff8883ae1b1a0b R11: 0000000000010498 R12: 0000000000000000 R13: 0000000000000000 R14: dffffc0000000000 R15: ffff88812c652058 FS: 00007f9713ae4980(0000) GS:ffff8883ae180000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fcd78483c7c CR3: 0000000122c38000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __warn.cold+0x5b/0x1af ? __mutex_lock+0xcf0/0x1220 ? report_bug+0x1ec/0x390 ? handle_bug+0x3c/0x80 ? exc_invalid_op+0x13/0x40 ? asm_exc_invalid_op+0x16/0x20 ? __mutex_lock+0xcf0/0x1220 ? nvme_tcp_get_address+0xc2/0x1e0 [nvme_tcp] ? __pfx___mutex_lock+0x10/0x10 ? __lock_acquire+0xd6a/0x59e0 ? nvme_tcp_get_address+0xc2/0x1e0 [nvme_tcp] nvme_tcp_get_address+0xc2/0x1e0 [nvme_tcp] ? __pfx_nvme_tcp_get_address+0x10/0x10 [nvme_tcp] nvme_sysfs_show_address+0x81/0xc0 [nvme_core] dev_attr_show+0x42/0x80 ? __asan_memset+0x1f/0x40 sysfs_kf_seq_show+0x1f0/0x370 seq_read_iter+0x2cb/0x1130 ? rw_verify_area+0x3b1/0x590 ? __mutex_lock+0x433/0x1220 vfs_read+0x6a6/0xa20 ? lockdep_hardirqs_on+0x78/0x100 ? __pfx_vfs_read+0x10/0x10 ksys_read+0xf7/0x1d0 ? __pfx_ksys_read+0x10/0x10 ? __x64_sys_openat+0x105/0x1d0 do_syscall_64+0x93/0x180 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? __pfx_ksys_read+0x10/0x10 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? do_syscall_64+0x9f/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f9713f55cfa Code: 55 48 89 e5 48 83 ec 20 48 89 55 e8 48 89 75 f0 89 7d f8 e8 e8 74 f8 ff 48 8b 55 e8 48 8b 75 f0 4 ---truncated---
In the Linux kernel, the following vulnerability has been resolved: platform/chrome: cros_ec_uart: properly fix race condition The cros_ec_uart_probe() function calls devm_serdev_device_open() before it calls serdev_device_set_client_ops(). This can trigger a NULL pointer dereference: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... Call Trace: <TASK> ... ? ttyport_receive_buf A simplified version of crashing code is as follows: static inline size_t serdev_controller_receive_buf(struct serdev_controller *ctrl, const u8 *data, size_t count) { struct serdev_device *serdev = ctrl->serdev; if (!serdev || !serdev->ops->receive_buf) // CRASH! return 0; return serdev->ops->receive_buf(serdev, data, count); } It assumes that if SERPORT_ACTIVE is set and serdev exists, serdev->ops will also exist. This conflicts with the existing cros_ec_uart_probe() logic, as it first calls devm_serdev_device_open() (which sets SERPORT_ACTIVE), and only later sets serdev->ops via serdev_device_set_client_ops(). Commit 01f95d42b8f4 ("platform/chrome: cros_ec_uart: fix race condition") attempted to fix a similar race condition, but while doing so, made the window of error for this race condition to happen much wider. Attempt to fix the race condition again, making sure we fully setup before calling devm_serdev_device_open().
A pivot_root race condition in fs/namespace.c in the Linux kernel 4.4.x before 4.4.221, 4.9.x before 4.9.221, 4.14.x before 4.14.178, 4.19.x before 4.19.119, and 5.x before 5.3 allows local users to cause a denial of service (panic) by corrupting a mountpoint reference counter.
In the Linux kernel, the following vulnerability has been resolved: list: fix a data-race around ep->rdllist ep_poll() first calls ep_events_available() with no lock held and checks if ep->rdllist is empty by list_empty_careful(), which reads rdllist->prev. Thus all accesses to it need some protection to avoid store/load-tearing. Note INIT_LIST_HEAD_RCU() already has the annotation for both prev and next. Commit bf3b9f6372c4 ("epoll: Add busy poll support to epoll with socket fds.") added the first lockless ep_events_available(), and commit c5a282e9635e ("fs/epoll: reduce the scope of wq lock in epoll_wait()") made some ep_events_available() calls lockless and added single call under a lock, finally commit e59d3c64cba6 ("epoll: eliminate unnecessary lock for zero timeout") made the last ep_events_available() lockless. BUG: KCSAN: data-race in do_epoll_wait / do_epoll_wait write to 0xffff88810480c7d8 of 8 bytes by task 1802 on cpu 0: INIT_LIST_HEAD include/linux/list.h:38 [inline] list_splice_init include/linux/list.h:492 [inline] ep_start_scan fs/eventpoll.c:622 [inline] ep_send_events fs/eventpoll.c:1656 [inline] ep_poll fs/eventpoll.c:1806 [inline] do_epoll_wait+0x4eb/0xf40 fs/eventpoll.c:2234 do_epoll_pwait fs/eventpoll.c:2268 [inline] __do_sys_epoll_pwait fs/eventpoll.c:2281 [inline] __se_sys_epoll_pwait+0x12b/0x240 fs/eventpoll.c:2275 __x64_sys_epoll_pwait+0x74/0x80 fs/eventpoll.c:2275 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae read to 0xffff88810480c7d8 of 8 bytes by task 1799 on cpu 1: list_empty_careful include/linux/list.h:329 [inline] ep_events_available fs/eventpoll.c:381 [inline] ep_poll fs/eventpoll.c:1797 [inline] do_epoll_wait+0x279/0xf40 fs/eventpoll.c:2234 do_epoll_pwait fs/eventpoll.c:2268 [inline] __do_sys_epoll_pwait fs/eventpoll.c:2281 [inline] __se_sys_epoll_pwait+0x12b/0x240 fs/eventpoll.c:2275 __x64_sys_epoll_pwait+0x74/0x80 fs/eventpoll.c:2275 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae value changed: 0xffff88810480c7d0 -> 0xffff888103c15098 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 1799 Comm: syz-fuzzer Tainted: G W 5.17.0-rc7-syzkaller-dirty #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
In the Linux kernel, the following vulnerability has been resolved: cipso: Fix data-races around sysctl. While reading cipso sysctl variables, they can be changed concurrently. So, we need to add READ_ONCE() to avoid data-races.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_ecn_fallback. While reading sysctl_tcp_ecn_fallback, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix a data-race around sysctl_fib_sync_mem. While reading sysctl_fib_sync_mem, it can be changed concurrently. So, we need to add READ_ONCE() to avoid a data-race.
In the Linux kernel, the following vulnerability has been resolved: sysctl: Fix data-races in proc_dou8vec_minmax(). A sysctl variable is accessed concurrently, and there is always a chance of data-race. So, all readers and writers need some basic protection to avoid load/store-tearing. This patch changes proc_dou8vec_minmax() to use READ_ONCE() and WRITE_ONCE() internally to fix data-races on the sysctl side. For now, proc_dou8vec_minmax() itself is tolerant to a data-race, but we still need to add annotations on the other subsystem's side.