In the Linux kernel, the following vulnerability has been resolved: phylib: fix potential use-after-free Commit bafbdd527d56 ("phylib: Add device reset GPIO support") added call to phy_device_reset(phydev) after the put_device() call in phy_detach(). The comment before the put_device() call says that the phydev might go away with put_device(). Fix potential use-after-free by calling phy_device_reset() before put_device().
In the Linux kernel, the following vulnerability has been resolved: can: j1939: fix Use-after-Free, hold skb ref while in use This patch fixes a Use-after-Free found by the syzbot. The problem is that a skb is taken from the per-session skb queue, without incrementing the ref count. This leads to a Use-after-Free if the skb is taken concurrently from the session queue due to a CTS.
In the Linux kernel, the following vulnerability has been resolved: net: qrtr: Avoid potential use after free in MHI send It is possible that the MHI ul_callback will be invoked immediately following the queueing of the skb for transmission, leading to the callback decrementing the refcount of the associated sk and freeing the skb. As such the dereference of skb and the increment of the sk refcount must happen before the skb is queued, to avoid the skb to be used after free and potentially the sk to drop its last refcount..
In the Linux kernel, the following vulnerability has been resolved: can: peak_pci: peak_pci_remove(): fix UAF When remove the module peek_pci, referencing 'chan' again after releasing 'dev' will cause UAF. Fix this by releasing 'dev' later. The following log reveals it: [ 35.961814 ] BUG: KASAN: use-after-free in peak_pci_remove+0x16f/0x270 [peak_pci] [ 35.963414 ] Read of size 8 at addr ffff888136998ee8 by task modprobe/5537 [ 35.965513 ] Call Trace: [ 35.965718 ] dump_stack_lvl+0xa8/0xd1 [ 35.966028 ] print_address_description+0x87/0x3b0 [ 35.966420 ] kasan_report+0x172/0x1c0 [ 35.966725 ] ? peak_pci_remove+0x16f/0x270 [peak_pci] [ 35.967137 ] ? trace_irq_enable_rcuidle+0x10/0x170 [ 35.967529 ] ? peak_pci_remove+0x16f/0x270 [peak_pci] [ 35.967945 ] __asan_report_load8_noabort+0x14/0x20 [ 35.968346 ] peak_pci_remove+0x16f/0x270 [peak_pci] [ 35.968752 ] pci_device_remove+0xa9/0x250
In the Linux kernel, the following vulnerability has been resolved: smb: client: guarantee refcounted children from parent session Avoid potential use-after-free bugs when walking DFS referrals, mounting and performing DFS failover by ensuring that all children from parent @tcon->ses are also refcounted. They're all needed across the entire DFS mount. Get rid of @tcon->dfs_ses_list while we're at it, too.
In the hidp_process_report in bluetooth, there is an integer overflow. This could lead to an out of bounds write with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android Versions: Android kernel Android ID: A-65853588 References: Upstream kernel.
The perf_swevent_init function in kernel/events/core.c in the Linux kernel before 3.8.9 uses an incorrect integer data type, which allows local users to gain privileges via a crafted perf_event_open system call.
In the Linux kernel, the following vulnerability has been resolved: crypto: iaa - Fix nr_cpus < nr_iaa case If nr_cpus < nr_iaa, the calculated cpus_per_iaa will be 0, which causes a divide-by-0 in rebalance_wq_table(). Make sure cpus_per_iaa is 1 in that case, and also in the nr_iaa == 0 case, even though cpus_per_iaa is never used if nr_iaa == 0, for paranoia.
In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: Add some bounds checking to firmware data Smatch complains about "head->full_size - head->header_size" can underflow. To some extent, we're always going to have to trust the firmware a bit. However, it's easy enough to add a check for negatives, and let's add a upper bounds check as well.
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix slab out of bounds write in smb_inherit_dacl() slab out-of-bounds write is caused by that offsets is bigger than pntsd allocation size. This patch add the check to validate 3 offsets using allocation size.
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix a null pointer access when the smc_rreg pointer is NULL In certain types of chips, such as VEGA20, reading the amdgpu_regs_smc file could result in an abnormal null pointer access when the smc_rreg pointer is NULL. Below are the steps to reproduce this issue and the corresponding exception log: 1. Navigate to the directory: /sys/kernel/debug/dri/0 2. Execute command: cat amdgpu_regs_smc 3. Exception Log:: [4005007.702554] BUG: kernel NULL pointer dereference, address: 0000000000000000 [4005007.702562] #PF: supervisor instruction fetch in kernel mode [4005007.702567] #PF: error_code(0x0010) - not-present page [4005007.702570] PGD 0 P4D 0 [4005007.702576] Oops: 0010 [#1] SMP NOPTI [4005007.702581] CPU: 4 PID: 62563 Comm: cat Tainted: G OE 5.15.0-43-generic #46-Ubunt u [4005007.702590] RIP: 0010:0x0 [4005007.702598] Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6. [4005007.702600] RSP: 0018:ffffa82b46d27da0 EFLAGS: 00010206 [4005007.702605] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffa82b46d27e68 [4005007.702609] RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff9940656e0000 [4005007.702612] RBP: ffffa82b46d27dd8 R08: 0000000000000000 R09: ffff994060c07980 [4005007.702615] R10: 0000000000020000 R11: 0000000000000000 R12: 00007f5e06753000 [4005007.702618] R13: ffff9940656e0000 R14: ffffa82b46d27e68 R15: 00007f5e06753000 [4005007.702622] FS: 00007f5e0755b740(0000) GS:ffff99479d300000(0000) knlGS:0000000000000000 [4005007.702626] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [4005007.702629] CR2: ffffffffffffffd6 CR3: 00000003253fc000 CR4: 00000000003506e0 [4005007.702633] Call Trace: [4005007.702636] <TASK> [4005007.702640] amdgpu_debugfs_regs_smc_read+0xb0/0x120 [amdgpu] [4005007.703002] full_proxy_read+0x5c/0x80 [4005007.703011] vfs_read+0x9f/0x1a0 [4005007.703019] ksys_read+0x67/0xe0 [4005007.703023] __x64_sys_read+0x19/0x20 [4005007.703028] do_syscall_64+0x5c/0xc0 [4005007.703034] ? do_user_addr_fault+0x1e3/0x670 [4005007.703040] ? exit_to_user_mode_prepare+0x37/0xb0 [4005007.703047] ? irqentry_exit_to_user_mode+0x9/0x20 [4005007.703052] ? irqentry_exit+0x19/0x30 [4005007.703057] ? exc_page_fault+0x89/0x160 [4005007.703062] ? asm_exc_page_fault+0x8/0x30 [4005007.703068] entry_SYSCALL_64_after_hwframe+0x44/0xae [4005007.703075] RIP: 0033:0x7f5e07672992 [4005007.703079] Code: c0 e9 b2 fe ff ff 50 48 8d 3d fa b2 0c 00 e8 c5 1d 02 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 0f 05 <48> 3d 00 f0 ff ff 77 56 c3 0f 1f 44 00 00 48 83 e c 28 48 89 54 24 [4005007.703083] RSP: 002b:00007ffe03097898 EFLAGS: 00000246 ORIG_RAX: 0000000000000000 [4005007.703088] RAX: ffffffffffffffda RBX: 0000000000020000 RCX: 00007f5e07672992 [4005007.703091] RDX: 0000000000020000 RSI: 00007f5e06753000 RDI: 0000000000000003 [4005007.703094] RBP: 00007f5e06753000 R08: 00007f5e06752010 R09: 00007f5e06752010 [4005007.703096] R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000022000 [4005007.703099] R13: 0000000000000003 R14: 0000000000020000 R15: 0000000000020000 [4005007.703105] </TASK> [4005007.703107] Modules linked in: nf_tables libcrc32c nfnetlink algif_hash af_alg binfmt_misc nls_ iso8859_1 ipmi_ssif ast intel_rapl_msr intel_rapl_common drm_vram_helper drm_ttm_helper amd64_edac t tm edac_mce_amd kvm_amd ccp mac_hid k10temp kvm acpi_ipmi ipmi_si rapl sch_fq_codel ipmi_devintf ipm i_msghandler msr parport_pc ppdev lp parport mtd pstore_blk efi_pstore ramoops pstore_zone reed_solo mon ip_tables x_tables autofs4 ib_uverbs ib_core amdgpu(OE) amddrm_ttm_helper(OE) amdttm(OE) iommu_v 2 amd_sched(OE) amdkcl(OE) drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops cec rc_core drm igb ahci xhci_pci libahci i2c_piix4 i2c_algo_bit xhci_pci_renesas dca [4005007.703184] CR2: 0000000000000000 [4005007.703188] ---[ en ---truncated---
IBM Security Guardium 11.3 could allow a local user to escalate their privileges due to improper permission controls. IBM X-Force ID: 240908.
An issue was discovered in EMC ScaleIO 2.0.1.x. In a Linux environment, one of the support scripts saves the credentials of the ScaleIO MDM user who executed the script in clear text in temporary log files. The temporary files may potentially be read by an unprivileged user with access to the server where the script was executed to recover exposed credentials.
IBM InfoSphere Information Server 11.7 could allow a local user to execute privileged commands due to the improper handling of permissions.
IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 10.5, 11.1, and 11.5 db2set is vulnerable to a buffer overflow, caused by improper bounds checking. An attacker could overflow the buffer and execute arbitrary code. IBM X-Force ID: 252184.
In the Linux kernel, the following vulnerability has been resolved: fs/jfs: Add check for negative db_l2nbperpage l2nbperpage is log2(number of blks per page), and the minimum legal value should be 0, not negative. In the case of l2nbperpage being negative, an error will occur when subsequently used as shift exponent. Syzbot reported this bug: UBSAN: shift-out-of-bounds in fs/jfs/jfs_dmap.c:799:12 shift exponent -16777216 is negative
In the Linux kernel, the following vulnerability has been resolved: cpufreq: CPPC: Fix potential memleak in cppc_cpufreq_cpu_init It's a classic example of memleak, we allocate something, we fail and never free the resources. Make sure we free all resources on policy ->init() failures.
A heap-based buffer overflow flaw was found in the way the legacy_parse_param function in the Filesystem Context functionality of the Linux kernel verified the supplied parameters length. An unprivileged (in case of unprivileged user namespaces enabled, otherwise needs namespaced CAP_SYS_ADMIN privilege) local user able to open a filesystem that does not support the Filesystem Context API (and thus fallbacks to legacy handling) could use this flaw to escalate their privileges on the system.
In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: fix list corruption from reorder of WRITE ->lqueued __blkcg_rstat_flush() can be run anytime, especially when blk_cgroup_bio_start is being executed. If WRITE of `->lqueued` is re-ordered with READ of 'bisc->lnode.next' in the loop of __blkcg_rstat_flush(), `next_bisc` can be assigned with one stat instance being added in blk_cgroup_bio_start(), then the local list in __blkcg_rstat_flush() could be corrupted. Fix the issue by adding one barrier.
IBM Spectrum Scale Container Native Storage Access 5.1.2.1 through 5.1.6.0 contains an unspecified vulnerability that could allow a local user to obtain root privileges. IBM X-Force ID: 237810.
NuProcess is an external process execution implementation for Java. In all the versions of NuProcess where it forks processes by using the JVM's Java_java_lang_UNIXProcess_forkAndExec method (1.2.0+), attackers can use NUL characters in their strings to perform command line injection. Java's ProcessBuilder isn't vulnerable because of a check in ProcessBuilder.start. NuProcess is missing that check. This vulnerability can only be exploited to inject command line arguments on Linux. Version 2.0.5 contains a patch. As a workaround, users of the library can sanitize command strings to remove NUL characters prior to passing them to NuProcess for execution.
In the Linux kernel, the following vulnerability has been resolved: exec: Fix ToCToU between perm check and set-uid/gid usage When opening a file for exec via do_filp_open(), permission checking is done against the file's metadata at that moment, and on success, a file pointer is passed back. Much later in the execve() code path, the file metadata (specifically mode, uid, and gid) is used to determine if/how to set the uid and gid. However, those values may have changed since the permissions check, meaning the execution may gain unintended privileges. For example, if a file could change permissions from executable and not set-id: ---------x 1 root root 16048 Aug 7 13:16 target to set-id and non-executable: ---S------ 1 root root 16048 Aug 7 13:16 target it is possible to gain root privileges when execution should have been disallowed. While this race condition is rare in real-world scenarios, it has been observed (and proven exploitable) when package managers are updating the setuid bits of installed programs. Such files start with being world-executable but then are adjusted to be group-exec with a set-uid bit. For example, "chmod o-x,u+s target" makes "target" executable only by uid "root" and gid "cdrom", while also becoming setuid-root: -rwxr-xr-x 1 root cdrom 16048 Aug 7 13:16 target becomes: -rwsr-xr-- 1 root cdrom 16048 Aug 7 13:16 target But racing the chmod means users without group "cdrom" membership can get the permission to execute "target" just before the chmod, and when the chmod finishes, the exec reaches brpm_fill_uid(), and performs the setuid to root, violating the expressed authorization of "only cdrom group members can setuid to root". Re-check that we still have execute permissions in case the metadata has changed. It would be better to keep a copy from the perm-check time, but until we can do that refactoring, the least-bad option is to do a full inode_permission() call (under inode lock). It is understood that this is safe against dead-locks, but hardly optimal.
In the Linux kernel, the following vulnerability has been resolved: bcachefs: Check for journal entries overruning end of sb clean section Fix a missing bounds check in superblock validation. Note that we don't yet have repair code for this case - repair code for individual items is generally low priority, since the whole superblock is checksummed, validated prior to write, and we have backups.
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Fixed overflow check in mi_enum_attr()
In the Linux kernel, the following vulnerability has been resolved: s390/zcrypt: fix reference counting on zcrypt card objects Tests with hot-plugging crytpo cards on KVM guests with debug kernel build revealed an use after free for the load field of the struct zcrypt_card. The reason was an incorrect reference handling of the zcrypt card object which could lead to a free of the zcrypt card object while it was still in use. This is an example of the slab message: kernel: 0x00000000885a7512-0x00000000885a7513 @offset=1298. First byte 0x68 instead of 0x6b kernel: Allocated in zcrypt_card_alloc+0x36/0x70 [zcrypt] age=18046 cpu=3 pid=43 kernel: kmalloc_trace+0x3f2/0x470 kernel: zcrypt_card_alloc+0x36/0x70 [zcrypt] kernel: zcrypt_cex4_card_probe+0x26/0x380 [zcrypt_cex4] kernel: ap_device_probe+0x15c/0x290 kernel: really_probe+0xd2/0x468 kernel: driver_probe_device+0x40/0xf0 kernel: __device_attach_driver+0xc0/0x140 kernel: bus_for_each_drv+0x8c/0xd0 kernel: __device_attach+0x114/0x198 kernel: bus_probe_device+0xb4/0xc8 kernel: device_add+0x4d2/0x6e0 kernel: ap_scan_adapter+0x3d0/0x7c0 kernel: ap_scan_bus+0x5a/0x3b0 kernel: ap_scan_bus_wq_callback+0x40/0x60 kernel: process_one_work+0x26e/0x620 kernel: worker_thread+0x21c/0x440 kernel: Freed in zcrypt_card_put+0x54/0x80 [zcrypt] age=9024 cpu=3 pid=43 kernel: kfree+0x37e/0x418 kernel: zcrypt_card_put+0x54/0x80 [zcrypt] kernel: ap_device_remove+0x4c/0xe0 kernel: device_release_driver_internal+0x1c4/0x270 kernel: bus_remove_device+0x100/0x188 kernel: device_del+0x164/0x3c0 kernel: device_unregister+0x30/0x90 kernel: ap_scan_adapter+0xc8/0x7c0 kernel: ap_scan_bus+0x5a/0x3b0 kernel: ap_scan_bus_wq_callback+0x40/0x60 kernel: process_one_work+0x26e/0x620 kernel: worker_thread+0x21c/0x440 kernel: kthread+0x150/0x168 kernel: __ret_from_fork+0x3c/0x58 kernel: ret_from_fork+0xa/0x30 kernel: Slab 0x00000372022169c0 objects=20 used=18 fp=0x00000000885a7c88 flags=0x3ffff00000000a00(workingset|slab|node=0|zone=1|lastcpupid=0x1ffff) kernel: Object 0x00000000885a74b8 @offset=1208 fp=0x00000000885a7c88 kernel: Redzone 00000000885a74b0: bb bb bb bb bb bb bb bb ........ kernel: Object 00000000885a74b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74d8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74e8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74f8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a7508: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 68 4b 6b 6b 6b a5 kkkkkkkkkkhKkkk. kernel: Redzone 00000000885a7518: bb bb bb bb bb bb bb bb ........ kernel: Padding 00000000885a756c: 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZZZZZ kernel: CPU: 0 PID: 387 Comm: systemd-udevd Not tainted 6.8.0-HF #2 kernel: Hardware name: IBM 3931 A01 704 (KVM/Linux) kernel: Call Trace: kernel: [<00000000ca5ab5b8>] dump_stack_lvl+0x90/0x120 kernel: [<00000000c99d78bc>] check_bytes_and_report+0x114/0x140 kernel: [<00000000c99d53cc>] check_object+0x334/0x3f8 kernel: [<00000000c99d820c>] alloc_debug_processing+0xc4/0x1f8 kernel: [<00000000c99d852e>] get_partial_node.part.0+0x1ee/0x3e0 kernel: [<00000000c99d94ec>] ___slab_alloc+0xaf4/0x13c8 kernel: [<00000000c99d9e38>] __slab_alloc.constprop.0+0x78/0xb8 kernel: [<00000000c99dc8dc>] __kmalloc+0x434/0x590 kernel: [<00000000c9b4c0ce>] ext4_htree_store_dirent+0x4e/0x1c0 kernel: [<00000000c9b908a2>] htree_dirblock_to_tree+0x17a/0x3f0 kernel: ---truncated---
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix Use-After-Free in tcp_ao_connect_init Since call_rcu, which is called in the hlist_for_each_entry_rcu traversal of tcp_ao_connect_init, is not part of the RCU read critical section, it is possible that the RCU grace period will pass during the traversal and the key will be free. To prevent this, it should be changed to hlist_for_each_entry_safe.
Use after free in Aura in Google Chrome prior to 139.0.7258.127 allowed a remote attacker who convinced a user to engage in specific UI gestures to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Medium)
In imgsys_cmdq, there is a possible use after free due to a missing valid range checking. This could lead to local escalation of privilege with System execution privileges needed. User interaction is needed for exploitation. Patch ID: ALPS07340433; Issue ID: ALPS07340350.
Race condition in the find_keyring_by_name function in security/keys/keyring.c in the Linux kernel 2.6.34-rc5 and earlier allows local users to cause a denial of service (memory corruption and system crash) or possibly have unspecified other impact via keyctl session commands that trigger access to a dead keyring that is undergoing deletion by the key_cleanup function.
Use-after-free vulnerability in Adobe Flash Player before 18.0.0.366 and 19.x through 22.x before 22.0.0.209 on Windows and OS X and before 11.2.202.632 on Linux allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2016-4173, CVE-2016-4222, CVE-2016-4226, CVE-2016-4227, CVE-2016-4228, CVE-2016-4229, CVE-2016-4230, CVE-2016-4231, and CVE-2016-4248.
Use-after-free vulnerability in drivers/net/ppp/ppp_generic.c in the Linux kernel before 4.5.2 allows local users to cause a denial of service (memory corruption and system crash, or spinlock) or possibly have unspecified other impact by removing a network namespace, related to the ppp_register_net_channel and ppp_unregister_channel functions.
Use-after-free vulnerability in Adobe Flash Player before 18.0.0.366 and 19.x through 22.x before 22.0.0.209 on Windows and OS X and before 11.2.202.632 on Linux allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2016-4173, CVE-2016-4174, CVE-2016-4222, CVE-2016-4227, CVE-2016-4228, CVE-2016-4229, CVE-2016-4230, CVE-2016-4231, and CVE-2016-4248.
Use-after-free vulnerability in Adobe Flash Player before 18.0.0.366 and 19.x through 22.x before 22.0.0.209 on Windows and OS X and before 11.2.202.632 on Linux allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2016-4173, CVE-2016-4174, CVE-2016-4222, CVE-2016-4226, CVE-2016-4227, CVE-2016-4228, CVE-2016-4230, CVE-2016-4231, and CVE-2016-4248.
Use after free in Cast in Google Chrome prior to 139.0.7258.66 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Medium)
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7925e: fix use-after-free in free_irq() From commit a304e1b82808 ("[PATCH] Debug shared irqs"), there is a test to make sure the shared irq handler should be able to handle the unexpected event after deregistration. For this case, let's apply MT76_REMOVED flag to indicate the device was removed and do not run into the resource access anymore.
In the Linux kernel, the following vulnerability has been resolved: media: edia: dvbdev: fix a use-after-free In dvb_register_device, *pdvbdev is set equal to dvbdev, which is freed in several error-handling paths. However, *pdvbdev is not set to NULL after dvbdev's deallocation, causing use-after-frees in many places, for example, in the following call chain: budget_register |-> dvb_dmxdev_init |-> dvb_register_device |-> dvb_dmxdev_release |-> dvb_unregister_device |-> dvb_remove_device |-> dvb_device_put |-> kref_put When calling dvb_unregister_device, dmxdev->dvbdev (i.e. *pdvbdev in dvb_register_device) could point to memory that had been freed in dvb_register_device. Thereafter, this pointer is transferred to kref_put and triggering a use-after-free.
A use-after-free flaw was found in ndlc_remove in drivers/nfc/st-nci/ndlc.c in the Linux Kernel. This flaw could allow an attacker to crash the system due to a race problem.
A use-after-free flaw was found in the Linux kernel’s Netfilter functionality when adding a rule with NFTA_RULE_CHAIN_ID. This flaw allows a local user to crash or escalate their privileges on the system.
A memory leak flaw was found in the Linux kernel’s io_uring functionality in how a user registers a buffer ring with IORING_REGISTER_PBUF_RING, mmap() it, and then frees it. This flaw allows a local user to crash or potentially escalate their privileges on the system.
Use after free in Media Stream in Google Chrome prior to 138.0.7204.183 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High)
A use-after-free flaw was found in the Linux kernel’s Ext4 File System in how a user triggers several file operations simultaneously with the overlay FS usage. This flaw allows a local user to crash or potentially escalate their privileges on the system. Only if patch 9a2544037600 ("ovl: fix use after free in struct ovl_aio_req") not applied yet, the kernel could be affected.
A use-after-free flaw was found in vhost_net_set_backend in drivers/vhost/net.c in virtio network subcomponent in the Linux kernel due to a double fget. This flaw could allow a local attacker to crash the system, and could even lead to a kernel information leak problem.
A use-after-free flaw was found in xgene_hwmon_remove in drivers/hwmon/xgene-hwmon.c in the Hardware Monitoring Linux Kernel Driver (xgene-hwmon). This flaw could allow a local attacker to crash the system due to a race problem. This vulnerability could even lead to a kernel information leak problem.
A use-after-free flaw was found in the Linux kernel’s mm/mremap memory address space accounting source code. This issue occurs due to a race condition between rmap walk and mremap, allowing a local user to crash the system or potentially escalate their privileges on the system.
Use After Free vulnerability in Linux kernel traffic control index filter (tcindex) allows Privilege Escalation. The imperfect hash area can be updated while packets are traversing, which will cause a use-after-free when 'tcf_exts_exec()' is called with the destroyed tcf_ext. A local attacker user can use this vulnerability to elevate its privileges to root. This issue affects Linux Kernel: from 4.14 before git commit ee059170b1f7e94e55fa6cadee544e176a6e59c2.
The irda_setsockopt function in net/irda/af_irda.c and later in drivers/staging/irda/net/af_irda.c in the Linux kernel before 4.17 allows local users to cause a denial of service (ias_object use-after-free and system crash) or possibly have unspecified other impact via an AF_IRDA socket.
Use after free in Extensions in Google Chrome prior to 139.0.7258.66 allowed a remote attacker to potentially exploit heap corruption via a crafted Chrome Extension. (Chromium security severity: Medium)
An issue was discovered in fs/gfs2/rgrp.c in the Linux kernel before 4.8. A use-after-free is caused by the functions gfs2_clear_rgrpd and read_rindex_entry.
A use-after-free flaw was found in the Linux kernel’s core dump subsystem. This flaw allows a local user to crash the system. Only if patch 390031c94211 ("coredump: Use the vma snapshot in fill_files_note") not applied yet, then kernel could be affected.
A use-after-free flaw was found in btrfs_search_slot in fs/btrfs/ctree.c in btrfs in the Linux Kernel.This flaw allows an attacker to crash the system and possibly cause a kernel information lea