Heap buffer overflow in Freetype in Google Chrome prior to 86.0.4240.111 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
OpenCV (Open Source Computer Vision Library) through 3.3 has a buffer overflow in the cv::BmpDecoder::readData function in modules/imgcodecs/src/grfmt_bmp.cpp when reading an image file by using cv::imread, as demonstrated by the 4-buf-overflow-readData-memcpy test case.
arch/x86/mm.c in Xen allows local PV guest OS users to gain host OS privileges via vectors related to map_grant_ref.
Buffer Overflow in uudecoder in Mutt affecting all versions starting from 0.94.13 before 2.2.3 allows read past end of input line
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_core: Fix possible buffer overflow struct hci_dev_info has a fixed size name[8] field so in the event that hdev->name is bigger than that strcpy would attempt to write past its size, so this fixes this problem by switching to use strscpy.
ISO 15765 and ISO 10681 dissector crash in Wireshark 4.0.0 to 4.0.3 and 3.6.0 to 3.6.11 allows denial of service via packet injection or crafted capture file
An exploitable buffer overflow vulnerability exists in the LoadEncoding functionality of the R programming language version 3.3.0. A specially crafted R script can cause a buffer overflow resulting in a memory corruption. An attacker can send a malicious R script to trigger this vulnerability.
The net_tx_pkt_do_sw_fragmentation function in hw/net/net_tx_pkt.c in QEMU (aka Quick Emulator) allows local guest OS administrators to cause a denial of service (infinite loop and QEMU process crash) via a zero length for the current fragment length.
A buffer overflow was discovered in NTFS-3G before 2022.10.3. Crafted metadata in an NTFS image can cause code execution. A local attacker can exploit this if the ntfs-3g binary is setuid root. A physically proximate attacker can exploit this if NTFS-3G software is configured to execute upon attachment of an external storage device.
sysstat is a set of system performance tools for the Linux operating system. On 32 bit systems, in versions 9.1.16 and newer but prior to 12.7.1, allocate_structures contains a size_t overflow in sa_common.c. The allocate_structures function insufficiently checks bounds before arithmetic multiplication, allowing for an overflow in the size allocated for the buffer representing system activities. This issue may lead to Remote Code Execution (RCE). This issue has been patched in version 12.7.1.
Multiple buffer overflows in Python 2.5.2 and earlier on 32bit platforms allow context-dependent attackers to cause a denial of service (crash) or have unspecified other impact via a long string that leads to incorrect memory allocation during Unicode string processing, related to the unicode_resize function and the PyMem_RESIZE macro.
A vulnerability classified as critical was found in X.org Server. Affected by this vulnerability is the function _GetCountedString of the file xkb/xkb.c. The manipulation leads to buffer overflow. It is recommended to apply a patch to fix this issue. The associated identifier of this vulnerability is VDB-211051.
The parse_string function in cjson.c in the cJSON library mishandles UTF8/16 strings, which allows remote attackers to cause a denial of service (crash) or execute arbitrary code via a non-hex character in a JSON string, which triggers a heap-based buffer overflow.
The (1) real_lookup and (2) __lookup_hash functions in fs/namei.c in the vfs implementation in the Linux kernel before 2.6.25.15 do not prevent creation of a child dentry for a deleted (aka S_DEAD) directory, which allows local users to cause a denial of service ("overflow" of the UBIFS orphan area) via a series of attempted file creations within deleted directories.
Buffer overflow in the mipsnet_receive function in hw/net/mipsnet.c in QEMU, when the guest NIC is configured to accept large packets, allows remote attackers to cause a denial of service (memory corruption and QEMU crash) or possibly execute arbitrary code via a packet larger than 1514 bytes.
Python 2.5.2 and earlier allows context-dependent attackers to execute arbitrary code via multiple vectors that cause a negative size value to be provided to the PyString_FromStringAndSize function, which allocates less memory than expected when assert() is disabled and triggers a buffer overflow.
Buffer overflow in the lldp_decode function in daemon/protocols/lldp.c in lldpd before 0.8.0 allows remote attackers to cause a denial of service (daemon crash) and possibly execute arbitrary code via vectors involving large management addresses and TLV boundaries.
Multiple buffer overflows in the (1) png_set_PLTE and (2) png_get_PLTE functions in libpng before 1.0.64, 1.1.x and 1.2.x before 1.2.54, 1.3.x and 1.4.x before 1.4.17, 1.5.x before 1.5.24, and 1.6.x before 1.6.19 allow remote attackers to cause a denial of service (application crash) or possibly have unspecified other impact via a small bit-depth value in an IHDR (aka image header) chunk in a PNG image.
tftpd_file.c in atftp through 0.7.4 has a buffer overflow because buffer-size handling does not properly consider the combination of data, OACK, and other options.
A flaw was found in the QXL display device emulation in QEMU. A double fetch of guest controlled values `cursor->header.width` and `cursor->header.height` can lead to the allocation of a small cursor object followed by a subsequent heap-based buffer overflow. A malicious privileged guest user could use this flaw to crash the QEMU process on the host or potentially execute arbitrary code within the context of the QEMU process.
In PHP versions 7.4.x below 7.4.30, 8.0.x below 8.0.20, and 8.1.x below 8.1.7, when pdo_mysql extension with mysqlnd driver, if the third party is allowed to supply host to connect to and the password for the connection, password of excessive length can trigger a buffer overflow in PHP, which can lead to a remote code execution vulnerability.
PJSIP is a free and open source multimedia communication library written in C language implementing standard based protocols such as SIP, SDP, RTP, STUN, TURN, and ICE. In versions prior to and including 2.12.1 a stack buffer overflow vulnerability affects PJSIP users that use STUN in their applications, either by: setting a STUN server in their account/media config in PJSUA/PJSUA2 level, or directly using `pjlib-util/stun_simple` API. A patch is available in commit 450baca which should be included in the next release. There are no known workarounds for this issue.
Buffer overflow in the pcnet_receive function in hw/net/pcnet.c in QEMU, when a guest NIC has a larger MTU, allows remote attackers to cause a denial of service (guest OS crash) or execute arbitrary code via a large packet.
Buffer overflow in the C12.22 dissector in Wireshark 3.4.0 to 3.4.9 and 3.2.0 to 3.2.17 allows denial of service via packet injection or crafted capture file
Buffer overflow in the Bluetooth HCI_ISO dissector in Wireshark 3.4.0 to 3.4.9 allows denial of service via packet injection or crafted capture file
A crafted NTFS image can cause heap exhaustion in ntfs_get_attribute_value in NTFS-3G through 2021.8.22.
perM 0.4.0 has a Buffer Overflow related to strncpy. (Debian initially fixed this in 0.4.0-7.)
In order to decrypt SM2 encrypted data an application is expected to call the API function EVP_PKEY_decrypt(). Typically an application will call this function twice. The first time, on entry, the "out" parameter can be NULL and, on exit, the "outlen" parameter is populated with the buffer size required to hold the decrypted plaintext. The application can then allocate a sufficiently sized buffer and call EVP_PKEY_decrypt() again, but this time passing a non-NULL value for the "out" parameter. A bug in the implementation of the SM2 decryption code means that the calculation of the buffer size required to hold the plaintext returned by the first call to EVP_PKEY_decrypt() can be smaller than the actual size required by the second call. This can lead to a buffer overflow when EVP_PKEY_decrypt() is called by the application a second time with a buffer that is too small. A malicious attacker who is able present SM2 content for decryption to an application could cause attacker chosen data to overflow the buffer by up to a maximum of 62 bytes altering the contents of other data held after the buffer, possibly changing application behaviour or causing the application to crash. The location of the buffer is application dependent but is typically heap allocated. Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k).
In the Linux kernel, the following vulnerability has been resolved: crypto: scomp - fix req->dst buffer overflow The req->dst buffer size should be checked before copying from the scomp_scratch->dst to avoid req->dst buffer overflow problem.
XMP Toolkit SDK version 2020.1 (and earlier) is affected by a buffer overflow vulnerability potentially resulting in arbitrary code execution in the context of the current user. Exploitation requires user interaction in that a victim must open a specially-crafted .cpp file.
Multiple buffer overflows in contrib/pgcrypto in PostgreSQL before 9.0.19, 9.1.x before 9.1.15, 9.2.x before 9.2.10, 9.3.x before 9.3.6, and 9.4.x before 9.4.1 allow remote authenticated users to cause a denial of service (crash) and possibly execute arbitrary code via unspecified vectors.
Buffer overflow in cgi.c in www-sql before 0.5.7 allows local users to execute arbitrary code via a web page that is processed by www-sql.
yubiserver before 0.6 is prone to buffer overflows due to misuse of sprintf.
Buffer overflow in the Bluetooth SDP dissector in Wireshark 3.4.0 to 3.4.9 and 3.2.0 to 3.2.17 allows denial of service via packet injection or crafted capture file
A buffer overflow issue was addressed with improved memory handling. This issue is fixed in tvOS 15.2, macOS Monterey 12.1, Safari 15.2, iOS 15.2 and iPadOS 15.2, watchOS 8.3. Processing maliciously crafted web content may lead to arbitrary code execution.
Multiple buffer overflow vulnerabilities were found in the QUIC image decoding process of the SPICE remote display system, before spice-0.14.2-1. Both the SPICE client (spice-gtk) and server are affected by these flaws. These flaws allow a malicious client or server to send specially crafted messages that, when processed by the QUIC image compression algorithm, result in a process crash or potential code execution.
Buffer overflow in the sqlite_decode_binary function in the bundled sqlite library in PHP 4 before 4.4.5 and PHP 5 before 5.2.1 allows context-dependent attackers to execute arbitrary code via an empty value of the in parameter, as demonstrated by calling the sqlite_udf_decode_binary function with a 0x01 character.
The to_char function in PostgreSQL before 9.0.19, 9.1.x before 9.1.15, 9.2.x before 9.2.10, 9.3.x before 9.3.6, and 9.4.x before 9.4.1 allows remote authenticated users to cause a denial of service (crash) or possibly execute arbitrary code via a (1) large number of digits when processing a numeric formatting template, which triggers a buffer over-read, or (2) crafted timestamp formatting template, which triggers a buffer overflow.
OpenConnect 8.09 has a buffer overflow, causing a denial of service (application crash) or possibly unspecified other impact, via crafted certificate data to get_cert_name in gnutls.c.
Python 3.x through 3.9.1 has a buffer overflow in PyCArg_repr in _ctypes/callproc.c, which may lead to remote code execution in certain Python applications that accept floating-point numbers as untrusted input, as demonstrated by a 1e300 argument to c_double.from_param. This occurs because sprintf is used unsafely.
Apache HTTP server 2.4.32 to 2.4.44 mod_proxy_uwsgi info disclosure and possible RCE
The dvd_read_bca function in the DVD handling code in drivers/cdrom/cdrom.c in Linux kernel 2.2.16, and later versions, assigns the wrong value to a length variable, which allows local users to execute arbitrary code via a crafted USB Storage device that triggers a buffer overflow.
Buffer overflow in ncurses 5.0, and the ncurses4 compatibility package as used in Red Hat Linux, allows local users to gain privileges, related to "routines for moving the physical cursor and scrolling."
The nsXBLProtoImpl::InstallImplementation function in Mozilla Firefox before 29.0, Firefox ESR 24.x before 24.5, Thunderbird before 24.5, and SeaMonkey before 2.26 does not properly check whether objects are XBL objects, which allows remote attackers to execute arbitrary code or cause a denial of service (buffer overflow) via crafted JavaScript code that accesses a non-XBL object as if it were an XBL object.
MariaDB Server v10.7 and below was discovered to contain a global buffer overflow in the component decimal_bin_size, which is exploited via specially crafted SQL statements.
A flaw was found in grub2, prior to version 2.06. An attacker may use the GRUB 2 flaw to hijack and tamper the GRUB verification process. This flaw also allows the bypass of Secure Boot protections. In order to load an untrusted or modified kernel, an attacker would first need to establish access to the system such as gaining physical access, obtain the ability to alter a pxe-boot network, or have remote access to a networked system with root access. With this access, an attacker could then craft a string to cause a buffer overflow by injecting a malicious payload that leads to arbitrary code execution within GRUB. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability.
Buffer overflow in CHICKEN 4.9.0 and 4.9.0.1 may allow remote attackers to execute arbitrary code via the 'select' function.
pam-krb5 before 4.9 has a buffer overflow that might cause remote code execution in situations involving supplemental prompting by a Kerberos library. It may overflow a buffer provided by the underlying Kerberos library by a single '\0' byte if an attacker responds to a prompt with an answer of a carefully chosen length. The effect may range from heap corruption to stack corruption depending on the structure of the underlying Kerberos library, with unknown effects but possibly including code execution. This code path is not used for normal authentication, but only when the Kerberos library does supplemental prompting, such as with PKINIT or when using the non-standard no_prompt PAM configuration option.
ClamAV before 0.97.7 has buffer overflow in the libclamav component
The eglibc package before 2.14 incorrectly handled the getaddrinfo() function. An attacker could use this issue to cause a denial of service.