xHTTP 72f812d has a double free in close_connection in xhttp.c via a malformed HTTP request method.
Windows Internet Key Exchange (IKE) Extension Denial of Service Vulnerability
Uncontrolled resource consumption in Windows Remote Desktop Services allows an unauthorized attacker to deny service over a network.
IBM Spectrum Protect Plus 10.1.0.0 through 10.1.9.2 and IBM Spectrum Copy Data Management 2.2.0.0 through 2.2.14.3 do not limit the length of a connection which could allow for a Slowloris HTTP denial of service attack to take place. This can cause the Admin Console to become unresponsive. IBM X-Force ID: 220485.
Windows Internet Information Services Cachuri Module Denial of Service Vulnerability
Certain WithSecure products allow a remote crash of a scanning engine via unpacking of crafted data files. This affects WithSecure Client Security 15, WithSecure Server Security 15, WithSecure Email and Server Security 15, WithSecure Elements Endpoint Protection 17 and later, WithSecure Client Security for Mac 15, WithSecure Elements Endpoint Protection for Mac 17 and later, Linux Security 64 12.0 , Linux Protection 12.0, and WithSecure Atlant (formerly F-Secure Atlant) 1.0.35-1.
Windows Internet Key Exchange (IKE) Extension Denial of Service Vulnerability
DirectX Graphics Kernel File Denial of Service Vulnerability
There is an ASSERTION (pFuncBody->GetYieldRegister() == oldYieldRegister) failed in Js::DebugContext::RundownSourcesAndReparse in ChakraCore version 1.12.0.0-beta.
A specially crafted packet sent to the Fernhill SCADA Server Version 3.77 and earlier may cause an exception, causing the server process (FHSvrService.exe) to exit.
IBM WebSphere Application Server Liberty 18.0.0.2 through 25.0.0.8 is vulnerable to a denial of service, caused by sending a specially-crafted request. A remote attacker could exploit this vulnerability to cause the server to consume memory resources.
In affected versions of Octopus Deploy it is possible to perform a Regex Denial of Service using the Variable Project Template.
A program using swift-corelibs-foundation is vulnerable to a denial of service attack caused by a potentially malicious source producing a JSON document containing a type mismatch. This vulnerability is caused by the interaction between a deserialization mechanism offered by the Swift standard library, the Codable protocol; and the JSONDecoder class offered by swift-corelibs-foundation, which can deserialize types that adopt the Codable protocol based on the content of a provided JSON document. When a type that adopts Codable requests the initialization of a field with an integer value, the JSONDecoder class uses a type-erased container with different accessor methods to attempt and coerce a corresponding JSON value and produce an integer. In the case the JSON value was a numeric literal with a floating-point portion, JSONDecoder used different type-eraser methods during validation than it did during the final casting of the value. The checked casting produces a deterministic crash due to this mismatch. The JSONDecoder class is often wrapped by popular Swift-based web frameworks to parse the body of HTTP requests and perform basic type validation. This makes the attack low-effort: sending a specifically crafted JSON document during a request to these endpoints will cause them to crash. The attack does not have any confidentiality or integrity risks in and of itself; the crash is produced deterministically by an abort function that ensures that execution does not continue in the face of this violation of assumptions. However, unexpected crashes can lead to violations of invariants in services, so it's possible that this attack can be used to trigger error conditions that escalate the risk. Producing a denial of service may also be the goal of an attacker in itself. This issue is solved in Swift 5.6.2 for Linux and Windows. This issue was solved by ensuring that the same methods are invoked both when validating and during casting, so that no type mismatch occurs. Swift for Linux and Windows versions are not ABI-interchangeable. To upgrade a service, its owner must update to this version of the Swift toolchain, then recompile and redeploy their software. The new version of Swift includes an updated swift-corelibs-foundation package. Versions of Swift running on Darwin-based operating systems are not affected.
A denial of service issue was addressed with improved input validation. This issue is fixed in iOS 13.6 and iPadOS 13.6. A remote attacker may cause an unexpected application termination.
Windows Network File System Denial of Service Vulnerability
A program using swift-nio-http2 is vulnerable to a denial of service attack, caused by a network peer sending a specially crafted HTTP/2 frame. This vulnerability is caused by a logical error when parsing a HTTP/2 HEADERS or HTTP/2 PUSH_PROMISE frame where the frame contains padding information without any other data. This logical error caused confusion about the size of the frame, leading to a parsing error. This parsing error immediately crashes the entire process. Sending a HEADERS frame or PUSH_PROMISE frame with HTTP/2 padding information does not require any special permission, so any HTTP/2 connection peer may send such a frame. For clients, this means any server to which they connect may launch this attack. For servers, anyone they allow to connect to them may launch such an attack. The attack is low-effort: it takes very little resources to send an appropriately crafted frame. The impact on availability is high: receiving the frame immediately crashes the server, dropping all in-flight connections and causing the service to need to restart. It is straightforward for an attacker to repeatedly send appropriately crafted frames, so attackers require very few resources to achieve a substantial denial of service. The attack does not have any confidentiality or integrity risks in and of itself: swift-nio-http2 is parsing the frame in memory-safe code, so the crash is safe. However, sudden process crashes can lead to violations of invariants in services, so it is possible that this attack can be used to trigger an error condition that has confidentiality or integrity risks. The risk can be mitigated if untrusted peers can be prevented from communicating with the service. This mitigation is not available to many services. The issue is fixed by rewriting the parsing code to correctly handle the condition. The issue was found by automated fuzzing by oss-fuzz.
<p>A denial of service vulnerability exists in Microsoft Outlook software when the software fails to properly handle objects in memory. An attacker who successfully exploited the vulnerability could cause a remote denial of service against a system.</p> <p>Exploitation of the vulnerability requires that a specially crafted email be sent to a vulnerable Outlook server.</p> <p>The security update addresses the vulnerability by correcting how Microsoft Outlook handles objects in memory.</p>
An invalid memory read vulnerability in a Trend Micro Secuity 2020 (v16.0.0.1302 and below) consumer family of products' driver could allow an attacker to manipulate the specific driver to do a system call operation with an invalid address, resulting in a potential system crash.
A denial of service vulnerability exists when ASP.NET Core improperly handles web requests. An attacker who successfully exploited this vulnerability could cause a denial of service against an ASP.NET Core web application. The vulnerability can be exploited remotely, without authentication. A remote unauthenticated attacker could exploit this vulnerability by issuing specially crafted requests to the ASP.NET Core application. The update addresses the vulnerability by correcting how the ASP.NET Core web application handles web requests.
IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 11.5 federated server is vulnerable to a denial of service when a specially crafted cursor is used. IBM X-Force ID: 268759.
<p>A denial of service vulnerability exists in Windows Remote Desktop Service when an attacker connects to the target system using RDP and sends specially crafted requests. An attacker who successfully exploited this vulnerability could cause the Remote Desktop Service on the target system to stop responding.</p> <p>To exploit this vulnerability, an attacker would need to run a specially crafted application against a server which provides Remote Desktop Service.</p> <p>The update addresses the vulnerability by correcting how Remote Desktop Service handles connection requests.</p>
<p>A denial of service vulnerability exists when the Windows TCP/IP stack improperly handles ICMPv6 Router Advertisement packets. An attacker who successfully exploited this vulnerability could cause a target system to stop responding.</p> <p>To exploit this vulnerability, an attacker would have to send specially crafted ICMPv6 Router Advertisement packets to a remote Windows computer. The vulnerability would not allow an attacker to execute code or to elevate user rights directly.</p> <p>The update addresses the vulnerability by correcting how the Windows TCP/IP stack handles ICMPv6 Router Advertisement packets.</p>
In nDPI through 3.2, the Oracle protocol dissector has a heap-based buffer over-read in ndpi_search_oracle in lib/protocols/oracle.c.
A vulnerability was found in freeSSHd 1.0.9 on Windows. It has been classified as problematic. This affects an unknown part. The manipulation leads to denial of service. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-251547.
In the Linux kernel, the following vulnerability has been resolved: net: sched: fix memory leak in tcindex_partial_destroy_work Syzbot reported memory leak in tcindex_set_parms(). The problem was in non-freed perfect hash in tcindex_partial_destroy_work(). In tcindex_set_parms() new tcindex_data is allocated and some fields from old one are copied to new one, but not the perfect hash. Since tcindex_partial_destroy_work() is the destroy function for old tcindex_data, we need to free perfect hash to avoid memory leak.
Certain WithSecure products allow Denial of Service via the aepack archive unpack handler. This affects WithSecure Client Security 15, WithSecure Server Security 15, WithSecure Email and Server Security 15, WithSecure Elements Endpoint Protection 17 and later, WithSecure Client Security for Mac 15, WithSecure Elements Endpoint Protection for Mac 17 and later, Linux Security 64 12.0 , Linux Protection 12.0, and WithSecure Atlant (formerly F-Secure Atlant) 1.0.35-1.
A denial of service vulnerability exists when the .NET implementation of Bond improperly parses input, aka 'Bond Denial of Service Vulnerability'.
An information disclosure vulnerability exists on ARM implementations that use speculative execution in control flow via a side-channel analysis, aka "straight-line speculation." To exploit this vulnerability, an attacker with local privileges would need to run a specially crafted application. The security update addresses the vulnerability by bypassing the speculative execution.
Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
A denial of service vulnerability exists in Windows Remote Desktop Gateway (RD Gateway) when an attacker connects to the target system using RDP and sends specially crafted requests. An attacker who successfully exploited this vulnerability could cause the RD Gateway service on the target system to stop responding. To exploit this vulnerability, an attacker would need to run a specially crafted application against a server which provides RD Gateway services. The update addresses the vulnerability by correcting how RD Gateway handles connection requests.
The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, 11.1, and 11.5 could allow an unauthenticated attacker to cause a denial of service due a hang in the SSL handshake response. IBM X-Force ID: 193660.
WebCore in Apple WebKit build 18794 allows remote attackers to cause a denial of service (null dereference and application crash) via a TD element with a large number in the ROWSPAN attribute, as demonstrated by a crash of OmniWeb 5.5.3 on Mac OS X 10.4.8, a different vulnerability than CVE-2006-2019.
In filter.c in slapd in OpenLDAP before 2.4.50, LDAP search filters with nested boolean expressions can result in denial of service (daemon crash).
SymCrypt Denial of Service Vulnerability
Certain WithSecure products allow Denial of Service via a fuzzed PE32 file. This affects WithSecure Client Security 15, WithSecure Server Security 15, WithSecure Email and Server Security 15, WithSecure Elements Endpoint Protection 17 and later, WithSecure Client Security for Mac 15, WithSecure Elements Endpoint Protection for Mac 17 and later, Linux Security 64 12.0 , Linux Protection 12.0, and WithSecure Atlant (formerly F-Secure Atlant) 1.0.35-1.
<p>A denial of service vulnerability exists in Windows DNS when it fails to properly handle queries. An attacker who successfully exploited this vulnerability could cause the DNS service to become nonresponsive.</p> <p>To exploit the vulnerability, an authenticated attacker could send malicious DNS queries to a target, resulting in a denial of service.</p> <p>The update addresses the vulnerability by correcting how Windows DNS processes queries.</p>
Windows Denial of Service Vulnerability
Uncontrolled resource consumption in Windows Netlogon allows an unauthorized attacker to deny service over a network.
Certain WithSecure products allow Denial of Service in the aeelf component. This affects WithSecure Client Security 15, WithSecure Server Security 15, WithSecure Email and Server Security 15, WithSecure Elements Endpoint Protection 17 and later, WithSecure Client Security for Mac 15, WithSecure Elements Endpoint Protection for Mac 17 and later, Linux Security 64 12.0 , Linux Protection 12.0, and WithSecure Atlant (formerly F-Secure Atlant) 1.0.35-1.
Windows Hyper-V Denial of Service Vulnerability
This issue was addressed with improved checks This issue is fixed in iOS 17.2 and iPadOS 17.2, iOS 16.7.3 and iPadOS 16.7.3. A remote attacker may be able to cause a denial-of-service.
Certain WithSecure products allow a remote crash of a scanning engine via processing of a compressed file. This affects WithSecure Client Security 15, WithSecure Server Security 15, WithSecure Email and Server Security 15, WithSecure Elements Endpoint Protection 17 and later, WithSecure Client Security for Mac 15, WithSecure Elements Endpoint Protection for Mac 17 and later, Linux Security 64 12.0 , Linux Protection 12.0, and WithSecure Atlant (formerly F-Secure Atlant) 1.0.35-1.
Certain WithSecure products allow an infinite loop in a scanning engine via unspecified file types. This affects WithSecure Client Security 15, WithSecure Server Security 15, WithSecure Email and Server Security 15, WithSecure Elements Endpoint Protection 17 and later, WithSecure Client Security for Mac 15, WithSecure Elements Endpoint Protection for Mac 17 and later, Linux Security 64 12.0 , Linux Protection 12.0, and WithSecure Atlant (formerly F-Secure Atlant) 1.0.35-1.
Uncontrolled resource consumption in Windows Local Security Authority Subsystem Service (LSASS) allows an unauthorized attacker to deny service over a network.
Certain WithSecure products allow an infinite loop in a scanning engine via unspecified file types. This affects WithSecure Client Security 15, WithSecure Server Security 15, WithSecure Email and Server Security 15, WithSecure Elements Endpoint Protection 17 and later, WithSecure Client Security for Mac 15, WithSecure Elements Endpoint Protection for Mac 17 and later, Linux Security 64 12.0 , Linux Protection 12.0, and WithSecure Atlant (formerly F-Secure Atlant) 1.0.35-1.
A denial of service vulnerability exists when .NET Core or .NET Framework improperly handles web requests, aka '.NET Core & .NET Framework Denial of Service Vulnerability'.
Certain WithSecure products allow a remote crash of a scanning engine via processing of an import struct in a PE file. This affects WithSecure Client Security 15, WithSecure Server Security 15, WithSecure Email and Server Security 15, WithSecure Elements Endpoint Protection 17 and later, WithSecure Client Security for Mac 15, WithSecure Elements Endpoint Protection for Mac 17 and later, Linux Security 64 12.0 , Linux Protection 12.0, and WithSecure Atlant (formerly F-Secure Atlant) 1.0.35-1.
Multiple memory corruption issues were addressed with improved input validation. This issue is fixed in macOS Ventura 13.4, iOS 16.5 and iPadOS 16.5. Multiple issues in libxml2.
Certain WithSecure products allow a remote crash of a scanning engine via unpacking of a PE file. This affects WithSecure Client Security 15, WithSecure Server Security 15, WithSecure Email and Server Security 15, WithSecure Elements Endpoint Protection 17 and later, WithSecure Client Security for Mac 15, WithSecure Elements Endpoint Protection for Mac 17 and later, Linux Security 64 12.0 , Linux Protection 12.0, and WithSecure Atlant (formerly F-Secure Atlant) 1.0.35-1.