A flaw was found in the OpenShift Lightspeed Service, which is vulnerable to unauthenticated API request flooding. Repeated queries to non-existent endpoints inflate metrics storage and processing, consuming excessive resources. This issue can lead to monitoring system degradation, increased disk usage, and potential service unavailability. Since the issue does not require authentication, an external attacker can exhaust CPU, RAM, and disk space, impacting both application and cluster stability.
A flaw was found in Smallrye, where smallrye-fault-tolerance is vulnerable to an out-of-memory (OOM) issue. This vulnerability is externally triggered when calling the metrics URI. Every call creates a new object within meterMap and may lead to a denial of service (DoS) issue.
A vulnerability was found in GnuTLS, where a cockpit (which uses gnuTLS) rejects a certificate chain with distributed trust. This issue occurs when validating a certificate chain with cockpit-certificate-ensure. This flaw allows an unauthenticated, remote client or attacker to initiate a denial of service attack.
A flaw was found in CRI-O that involves an experimental annotation leading to a container being unconfined. This may allow a pod to specify and get any amount of memory/cpu, circumventing the kubernetes scheduler and potentially resulting in a denial of service in the node.
An incomplete fix was shipped for the Rapid Reset (CVE-2023-44487/CVE-2023-39325) vulnerability for an OpenShift Containers.
A flaw was found in the Linux kernel's NVMe driver. This issue may allow an unauthenticated malicious actor to send a set of crafted TCP packages when using NVMe over TCP, leading the NVMe driver to a NULL pointer dereference in the NVMe driver, causing kernel panic and a denial of service.
A flaw was found in Squid. The limits applied for validation of HTTP response headers are applied before caching. However, Squid may grow a cached HTTP response header beyond the configured maximum size, causing a stall or crash of the worker process when a large header is retrieved from the disk cache, resulting in a denial of service.
A flaw was found in the Linux kernel's NVMe driver. This issue may allow an unauthenticated malicious actor to send a set of crafted TCP packages when using NVMe over TCP, leading the NVMe driver to a NULL pointer dereference in the NVMe driver and causing kernel panic and a denial of service.
An off-by-one heap-based buffer overflow was found in the __vsyslog_internal function of the glibc library. This function is called by the syslog and vsyslog functions. This issue occurs when these functions are called with a message bigger than INT_MAX bytes, leading to an incorrect calculation of the buffer size to store the message, resulting in an application crash. This issue affects glibc 2.37 and newer.
A denial of service vulnerability was found in keycloak where the amount of attributes per object is not limited,an attacker by sending repeated HTTP requests could cause a resource exhaustion when the application send back rows with long attribute values.
A double-free vulnerability was found in libdwarf. In a multiply-corrupted DWARF object, libdwarf may try to dealloc(free) an allocation twice, potentially causing unpredictable and various results.
A regression was introduced in the Red Hat build of python-eventlet due to a change in the patch application strategy, resulting in a patch for CVE-2021-21419 not being applied for all builds of all products.
A flaw was found in XNIO. The XNIO NotifierState that can cause a Stack Overflow Exception when the chain of notifier states becomes problematically large can lead to uncontrolled resource management and a possible denial of service (DoS).
A flaw was found in Undertow. When an AJP request is sent that exceeds the max-header-size attribute in ajp-listener, JBoss EAP is marked in an error state by mod_cluster in httpd, causing JBoss EAP to close the TCP connection without returning an AJP response. This happens because mod_proxy_cluster marks the JBoss EAP instance as an error worker when the TCP connection is closed from the backend after sending the AJP request without receiving an AJP response, and stops forwarding. This issue could allow a malicious user could to repeatedly send requests that exceed the max-header-size, causing a Denial of Service (DoS).
A memory leak flaw was found in Golang in the RSA encrypting/decrypting code, which might lead to a resource exhaustion vulnerability using attacker-controlled inputs. The memory leak happens in github.com/golang-fips/openssl/openssl/rsa.go#L113. The objects leaked are pkey and ctx. That function uses named return parameters to free pkey and ctx if there is an error initializing the context or setting the different properties. All return statements related to error cases follow the "return nil, nil, fail(...)" pattern, meaning that pkey and ctx will be nil inside the deferred function that should free them.
A flaw was found when using samba as an Active Directory Domain Controller. Due to the way samba handles certain requests as an Active Directory Domain Controller LDAP server, an unauthorized user can cause a stack overflow leading to a denial of service. The highest threat from this vulnerability is to system availability. This issue affects all samba versions before 4.10.15, before 4.11.8 and before 4.12.2.
A flaw was found in the Linux kernel's ksmbd, a high-performance in-kernel SMB server. The specific flaw exists within the handling of SMB2_LOGOFF commands. The issue results from the lack of proper validation of a pointer prior to accessing it. An attacker can leverage this vulnerability to create a denial-of-service condition on the system.
A flaw was found in the quarkus-resteasy extension, which causes memory leaks when client requests with low timeouts are made. If a client request times out, a buffer is not released correctly, leading to increased memory usage and eventual application crash due to OutOfMemoryError.
A flaw was found in Nodemailer. This vulnerability allows a denial of service (DoS) via a crafted email address header that triggers infinite recursion in the address parser.
A flaw was found in WebKitGTK and WPE WebKit. This vulnerability allows an out-of-bounds read and integer underflow, leading to a UIProcess crash (DoS) via a crafted payload to the GLib remote inspector server.
A flaw was found in the asynchronous message queue handling of the libsoup library, widely used by GNOME and WebKit-based applications to manage HTTP/2 communications. When network operations are aborted at specific timing intervals, an internal message queue item may be freed twice due to missing state synchronization. This leads to a use-after-free memory access, potentially crashing the affected application. Attackers could exploit this behavior remotely by triggering specific HTTP/2 read and cancel sequences, resulting in a denial-of-service condition.
A flaw was found in Keycloak. This vulnerability allows an unauthenticated remote attacker to cause a denial of service (DoS) by repeatedly initiating TLS 1.2 client-initiated renegotiation requests to exhaust server CPU resources, making the service unavailable.
A flaw was found in QEMU. If the QIOChannelWebsock object is freed while it is waiting to complete a handshake, a GSource is leaked. This can lead to the callback firing later on and triggering a use-after-free in the use of the channel. This can be abused by a malicious client with network access to the VNC WebSocket port to cause a denial of service during the WebSocket handshake prior to the VNC client authentication.
A flaw was found in Aardvark-dns, which is vulnerable to a Denial of Service attack due to the serial processing of TCP DNS queries. An attacker can exploit this flaw by keeping a TCP connection open indefinitely, causing the server to become unresponsive and resulting in other DNS queries timing out. This issue prevents legitimate users from accessing DNS services, thereby disrupting normal operations and causing service downtime.
A flaw was found in the Linux kernel's NFS implementation, all versions 3.x and all versions 4.x up to 4.20. An attacker, who is able to mount an exported NFS filesystem, is able to trigger a null pointer dereference by using an invalid NFS sequence. This can panic the machine and deny access to the NFS server. Any outstanding disk writes to the NFS server will be lost.
A denial of service flaw was found in the way BIND handled DNSSEC validation. A remote attacker could use this flaw to make named exit unexpectedly with an assertion failure via a specially crafted DNS response.
An infinite loop vulnerability was found in Samba's mdssvc RPC service for Spotlight. When parsing Spotlight mdssvc RPC packets sent by the client, the core unmarshalling function sl_unpack_loop() did not validate a field in the network packet that contains the count of elements in an array-like structure. By passing 0 as the count value, the attacked function will run in an endless loop consuming 100% CPU. This flaw allows an attacker to issue a malformed RPC request, triggering an infinite loop, resulting in a denial of service condition.
An improper interpretation conflict of certain data between certain software components within the Juniper Networks Junos OS devices does not allow certain traffic to pass through the device upon receipt from an ingress interface filtering certain specific types of traffic which is then being redirected to an egress interface on a different VLAN. This causes a Denial of Service (DoS) to those clients sending these particular types of traffic. Such traffic being sent by a client may appear genuine, but is non-standard in nature and should be considered as potentially malicious, and can be targeted to the device, or destined through it for the issue to occur. This issues affects IPv4 and IPv6 traffic. An indicator of compromise may be found by checking log files. You may find that traffic on the input interface has 100% of traffic flowing into the device, yet the egress interface shows 0 pps leaving the device. For example: [show interfaces "interface" statistics detail] Output between two interfaces would reveal something similar to: Ingress, first interface: -------------------- Interface Link Input packets (pps) Output packets (pps) et-0/0/0 Up 9999999999 (9999) 1 (0) -------------------- Egress, second interface: -------------------- Interface Link Input packets (pps) Output packets (pps) et-0/0/1 Up 0 (0) 9999999999 (0) -------------------- Dropped packets will not show up in DDoS monitoring/protection counters as issue is not caused by anti-DDoS protection mechanisms. This issue affects: Juniper Networks Junos OS: 17.3 versions prior to 17.3R3-S7 on NFX250, QFX5K Series, EX4600; 17.4 versions prior to 17.4R2-S11, 17.4R3-S3 on NFX250, QFX5K Series, EX4600; 18.1 versions prior to 18.1R3-S9 on NFX250, QFX5K Series, EX2300 Series, EX3400 Series, EX4600; 18.2 versions prior to 18.2R3-S3 on NFX250, QFX5K Series, EX2300 Series, EX3400 Series, EX4300 Multigigabit, EX4600; 18.3 versions prior to 18.3R3-S1 on NFX250, QFX5K Series, EX2300 Series, EX3400 Series, EX4300 Multigigabit, EX4600 Series; 18.4 versions prior to 18.4R1-S5, 18.4R2-S3, 18.4R3 on NFX250, QFX5K Series, EX2300 Series, EX3400 Series, EX4300 Multigigabit, EX4600 Series; 19.1 versions prior to 19.1R1-S5, 19.1R2-S1, 19.1R3 on NFX250, QFX5K Series, EX2300 Series, EX3400 Series, EX4300 Multigigabit, EX4600 Series; 19.2 versions prior to 19.2R1-S5, 19.2R2 on NFX250, QFX5K Series, EX2300 Series, EX3400 Series, EX4300 Multigigabit, EX4600 Series; 19.3 versions prior to 19.3R2-S3, 19.3R3 on NFX250, QFX5K Series, EX2300 Series, EX3400 Series, EX4300 Multigigabit, EX4600 Series; 19.4 versions prior to 19.4R1-S2, 19.4R2 on NFX250, NFX350, QFX5K Series, EX2300 Series, EX3400 Series, EX4300 Multigigabit, EX4600 Series. This issue does not affect Junos OS releases prior to 17.2R2.