An integer overflow was found in the QEMU implementation of VMWare's paravirtual RDMA device in versions prior to 6.1.0. The issue occurs while handling a "PVRDMA_REG_DSRHIGH" write from the guest due to improper input validation. This flaw allows a privileged guest user to make QEMU allocate a large amount of memory, resulting in a denial of service. The highest threat from this vulnerability is to system availability.
Linux kernel 2.6.x up to 2.6.18 and possibly other versions, when SELinux hooks are enabled, allows local users to cause a denial of service (crash) via a malformed file stream that triggers a NULL pointer dereference in the superblock_doinit function, as demonstrated using an HFS filesystem image.
The KVM implementation in the Linux kernel before 3.3.6 allows host OS users to cause a denial of service (NULL pointer dereference and host OS crash) by making a KVM_CREATE_IRQCHIP ioctl call after a virtual CPU already exists.
The cifs_lookup function in fs/cifs/dir.c in the Linux kernel before 3.2.10 allows local users to cause a denial of service (OOPS) via attempted access to a special file, as demonstrated by a FIFO.
The NTFS filesystem code in Linux kernel 2.6.x up to 2.6.18, and possibly other versions, allows local users to cause a denial of service (CPU consumption) via a malformed NTFS file stream that triggers an infinite loop in the __find_get_block_slow function.
basic/unit-name.c in systemd prior to 246.15, 247.8, 248.5, and 249.1 has a Memory Allocation with an Excessive Size Value (involving strdupa and alloca for a pathname controlled by a local attacker) that results in an operating system crash.
The kiocb_batch_free function in fs/aio.c in the Linux kernel before 3.2.2 allows local users to cause a denial of service (OOPS) via vectors that trigger incorrect iocb management.
The iscsi_if_rx function in drivers/scsi/scsi_transport_iscsi.c in the Linux kernel through 4.13.2 allows local users to cause a denial of service (panic) by leveraging incorrect length validation.
The int3 handler in the Linux kernel before 3.3 relies on a per-CPU debug stack, which allows local users to cause a denial of service (stack corruption and panic) via a crafted application that triggers certain lock contention.
An issue was discovered in Xen through 4.14.x. Out of bounds event channels are available to 32-bit x86 domains. The so called 2-level event channel model imposes different limits on the number of usable event channels for 32-bit x86 domains vs 64-bit or Arm (either bitness) ones. 32-bit x86 domains can use only 1023 channels, due to limited space in their shared (between guest and Xen) information structure, whereas all other domains can use up to 4095 in this model. The recording of the respective limit during domain initialization, however, has occurred at a time where domains are still deemed to be 64-bit ones, prior to actually honoring respective domain properties. At the point domains get recognized as 32-bit ones, the limit didn't get updated accordingly. Due to this misbehavior in Xen, 32-bit domains (including Domain 0) servicing other domains may observe event channel allocations to succeed when they should really fail. Subsequent use of such event channels would then possibly lead to corruption of other parts of the shared info structure. An unprivileged guest may cause another domain, in particular Domain 0, to misbehave. This may lead to a Denial of Service (DoS) for the entire system. All Xen versions from 4.4 onwards are vulnerable. Xen versions 4.3 and earlier are not vulnerable. Only x86 32-bit domains servicing other domains are vulnerable. Arm systems, as well as x86 64-bit domains, are not vulnerable.
Integer overflow in the xfs_acl_from_disk function in fs/xfs/xfs_acl.c in the Linux kernel before 3.1.9 allows local users to cause a denial of service (panic) via a filesystem with a malformed ACL, leading to a heap-based buffer overflow.
Integer overflow in the oom_badness function in mm/oom_kill.c in the Linux kernel before 3.1.8 on 64-bit platforms allows local users to cause a denial of service (memory consumption or process termination) by using a certain large amount of memory.
nf_tables_newset in net/netfilter/nf_tables_api.c in the Linux kernel before 5.12.13 allows local users to cause a denial of service (NULL pointer dereference and general protection fault) because of the missing initialization for nft_set_elem_expr_alloc. A local user can set a netfilter table expression in their own namespace.
The net subsystem in the Linux kernel before 3.1 does not properly restrict use of the IFF_TX_SKB_SHARING flag, which allows local users to cause a denial of service (panic) by leveraging the CAP_NET_ADMIN capability to access /proc/net/pktgen/pgctrl, and then using the pktgen package in conjunction with a bridge device for a VLAN interface.
The NFS implementation in Linux kernel before 2.6.31-rc6 calls certain functions without properly initializing certain data, which allows local users to cause a denial of service (NULL pointer dereference and O_DIRECT oops), as demonstrated using diotest4 from LTP.
Double free vulnerability in squashfs module in the Linux kernel 2.6.x, as used in Fedora Core 5 and possibly other distributions, allows local users to cause a denial of service by mounting a crafted squashfs filesystem.
An issue was discovered in the Linux kernel before 5.11.11. The BPF subsystem does not properly consider that resolved_ids and resolved_sizes are intentionally uninitialized in the vmlinux BPF Type Format (BTF), which can cause a system crash upon an unexpected access attempt (in map_create in kernel/bpf/syscall.c or check_btf_info in kernel/bpf/verifier.c), aka CID-350a5c4dd245.
In intel_pmu_drain_pebs_nhm in arch/x86/events/intel/ds.c in the Linux kernel through 5.11.8 on some Haswell CPUs, userspace applications (such as perf-fuzzer) can cause a system crash because the PEBS status in a PEBS record is mishandled, aka CID-d88d05a9e0b6.
inadequate grant-v2 status frames array bounds check The v2 grant table interface separates grant attributes from grant status. That is, when operating in this mode, a guest has two tables. As a result, guests also need to be able to retrieve the addresses that the new status tracking table can be accessed through. For 32-bit guests on x86, translation of requests has to occur because the interface structure layouts commonly differ between 32- and 64-bit. The translation of the request to obtain the frame numbers of the grant status table involves translating the resulting array of frame numbers. Since the space used to carry out the translation is limited, the translation layer tells the core function the capacity of the array within translation space. Unfortunately the core function then only enforces array bounds to be below 8 times the specified value, and would write past the available space if enough frame numbers needed storing.
An issue was discovered in the Linux kernel before 5.11.11. The netfilter subsystem allows attackers to cause a denial of service (panic) because net/netfilter/x_tables.c and include/linux/netfilter/x_tables.h lack a full memory barrier upon the assignment of a new table value, aka CID-175e476b8cdf.
The bcm_release function in net/can/bcm.c in the Linux kernel before 2.6.39-rc6 does not properly validate a socket data structure, which allows local users to cause a denial of service (NULL pointer dereference) or possibly have unspecified other impact via a crafted release operation.
The Network Lock Manager (NLM) protocol implementation in the NFS client functionality in the Linux kernel before 3.0 allows local users to cause a denial of service (system hang) via a LOCK_UN flock system call.
Heap-based buffer overflow in the is_gpt_valid function in fs/partitions/efi.c in the Linux kernel 2.6.38 and earlier allows physically proximate attackers to cause a denial of service (OOPS) or possibly have unspecified other impact via a crafted size of the EFI GUID partition-table header on removable media.
An issue was discovered in the Linux kernel before 5.11.11. The user mode driver (UMD) has a copy_process() memory leak, related to a lack of cleanup steps in kernel/usermode_driver.c and kernel/bpf/preload/bpf_preload_kern.c, aka CID-f60a85cad677.
The x86_assign_hw_event function in arch/x86/kernel/cpu/perf_event.c in the Performance Events subsystem in the Linux kernel before 2.6.39 does not properly calculate counter values, which allows local users to cause a denial of service (panic) via the perf program.
An issue was discovered in fs/io_uring.c in the Linux kernel through 5.11.8. It allows attackers to cause a denial of service (deadlock) because exit may be waiting to park a SQPOLL thread, but concurrently that SQPOLL thread is waiting for a signal to start, aka CID-3ebba796fa25.
The add_del_listener function in kernel/taskstats.c in the Linux kernel 2.6.39.1 and earlier does not prevent multiple registrations of exit handlers, which allows local users to cause a denial of service (memory and CPU consumption), and bypass the OOM Killer, via a crafted application.
Integer overflow in the vma_to_resize function in mm/mremap.c in the Linux kernel before 2.6.39 allows local users to cause a denial of service (BUG_ON and system crash) via a crafted mremap system call that expands a memory mapping.
The gfs2_fallocate function in fs/gfs2/file.c in the Linux kernel before 3.0-rc1 does not ensure that the size of a chunk allocation is a multiple of the block size, which allows local users to cause a denial of service (BUG and system crash) by arranging for all resource groups to have too little free space.
The tomoyo_mount_acl function in security/tomoyo/mount.c in the Linux kernel before 2.6.39.2 calls the kern_path function with arguments taken directly from a mount system call, which allows local users to cause a denial of service (OOPS) or possibly have unspecified other impact via a NULL value for the device name.
The Linux kernel from v2.3.36 before v2.6.39 allows local unprivileged users to cause a denial of service (memory consumption) by triggering creation of PTE pages.
Multiple off-by-one errors in the ext4 subsystem in the Linux kernel before 3.0-rc5 allow local users to cause a denial of service (BUG_ON and system crash) by accessing a sparse file in extent format with a write operation involving a block number corresponding to the largest possible 32-bit unsigned integer.
The Linux kernel before 2.6.39 does not properly create transparent huge pages in response to a MAP_PRIVATE mmap system call on /dev/zero, which allows local users to cause a denial of service (system crash) via a crafted application.
The raw_release function in net/can/raw.c in the Linux kernel before 2.6.39-rc6 does not properly validate a socket data structure, which allows local users to cause a denial of service (NULL pointer dereference) or possibly have unspecified other impact via a crafted release operation.
Multiple integer overflows in the next_pidmap function in kernel/pid.c in the Linux kernel before 2.6.38.4 allow local users to cause a denial of service (system crash) via a crafted (1) getdents or (2) readdir system call.
The epoll implementation in the Linux kernel 2.6.37.2 and earlier does not properly traverse a tree of epoll file descriptors, which allows local users to cause a denial of service (CPU consumption) via a crafted application that makes epoll_create and epoll_ctl system calls.
The ldm_parse_vmdb function in fs/partitions/ldm.c in the Linux kernel before 2.6.38-rc6-git6 does not validate the VBLK size value in the VMDB structure in an LDM partition table, which allows local users to cause a denial of service (divide-by-zero error and OOPS) via a crafted partition table.
The ELF loader in Linux kernel 2.4 before 2.4.25 allows local users to cause a denial of service (crash) via a crafted ELF file with an interpreter with an invalid arch (architecture), which triggers a BUG() when an invalid VMA is unmapped.
An issue was discovered in the Linux kernel through 5.11.3, as used with Xen PV. A certain part of the netback driver lacks necessary treatment of errors such as failed memory allocations (as a result of changes to the handling of grant mapping errors). A host OS denial of service may occur during misbehavior of a networking frontend driver. NOTE: this issue exists because of an incomplete fix for CVE-2021-26931.
fs/eventpoll.c in the Linux kernel before 2.6.38 places epoll file descriptors within other epoll data structures without properly checking for (1) closed loops or (2) deep chains, which allows local users to cause a denial of service (deadlock or stack memory consumption) via a crafted application that makes epoll_create and epoll_ctl system calls.
mm/huge_memory.c in the Linux kernel before 2.6.38-rc5 does not prevent creation of a transparent huge page (THP) during the existence of a temporary stack for an exec system call, which allows local users to cause a denial of service (memory consumption) or possibly have unspecified other impact via a crafted application.
The __nfs4_proc_set_acl function in fs/nfs/nfs4proc.c in the Linux kernel before 2.6.38 stores NFSv4 ACL data in memory that is allocated by kmalloc but not properly freed, which allows local users to cause a denial of service (panic) via a crafted attempt to set an ACL.
The Reliable Datagram Sockets (RDS) subsystem in the Linux kernel before 2.6.38 does not properly handle congestion map updates, which allows local users to cause a denial of service (BUG_ON and system crash) via vectors involving (1) a loopback (aka loop) transmit operation or (2) an InfiniBand (aka ib) transmit operation.
Buffer overflow in the mac_partition function in fs/partitions/mac.c in the Linux kernel before 2.6.37.2 allows local users to cause a denial of service (panic) or possibly have unspecified other impact via a malformed Mac OS partition table.
net/dns_resolver/dns_key.c in the Linux kernel before 2.6.38 allows remote DNS servers to cause a denial of service (NULL pointer dereference and OOPS) by not providing a valid response to a DNS query, as demonstrated by an erroneous grand.centrall.org query, which triggers improper handling of error data within a DNS resolver key.
include/linux/init_task.h in the Linux kernel before 2.6.35 does not prevent signals with a process group ID of zero from reaching the swapper process, which allows local users to cause a denial of service (system crash) by leveraging access to this process group.
Race condition in arch/x86/kvm/x86.c in the Linux kernel before 2.6.38 allows L2 guest OS users to cause a denial of service (L1 guest OS crash) via a crafted instruction that triggers an L2 emulation failure report, a similar issue to CVE-2014-7842.
The video_usercopy function in drivers/media/video/v4l2-ioctl.c in the Linux kernel before 2.6.39 relies on the count value of a v4l2_ext_controls data structure to determine a kmalloc size, which might allow local users to cause a denial of service (memory consumption) via a large value.
The Internet Group Management Protocol (IGMP) allows local users to cause a denial of service via an IGMP membership report to a target's Ethernet address instead of the Multicast group address, which causes the target to stop sending reports to the router and effectively disconnect the group from the network.
The KVM implementation in the Linux kernel before 2.6.36 does not properly reload the FS and GS segment registers, which allows host OS users to cause a denial of service (host OS crash) via a KVM_RUN ioctl call in conjunction with a modified Local Descriptor Table (LDT).