fs/namespace.c in the Linux kernel before 4.0.2 does not properly support mount connectivity, which allows local users to read arbitrary files by leveraging user-namespace root access for deletion of a file or directory.
The simulate dbus method in aptdaemon before 1.1.1+bzr982-0ubuntu3.1 as packaged in Ubuntu 15.04, before 1.1.1+bzr980-0ubuntu1.1 as packaged in Ubuntu 14.10, before 1.1.1-1ubuntu5.2 as packaged in Ubuntu 14.04 LTS, before 0.43+bzr805-0ubuntu10 as packaged in Ubuntu 12.04 LTS allows local users to obtain sensitive information, or access files with root permissions.
drivers/xen/usbback/usbback.c in linux-2.6.18-xen-3.4.0 (aka the Xen 3.4.x support patches for the Linux kernel 2.6.18), as used in the Linux kernel 2.6.x and 3.x in SUSE Linux distributions, allows guest OS users to obtain sensitive information from uninitialized locations in host OS kernel memory via unspecified vectors.
The __switch_to function in arch/x86/kernel/process_64.c in the Linux kernel through 3.18.1 does not ensure that Thread Local Storage (TLS) descriptors are loaded before proceeding with other steps, which makes it easier for local users to bypass the ASLR protection mechanism via a crafted application that reads a TLS base address.
A flaw was found in s390 eBPF JIT in bpf_jit_insn in arch/s390/net/bpf_jit_comp.c in the Linux kernel. In this flaw, a local attacker with special user privilege can circumvent the verifier and may lead to a confidentiality problem.
The ib_uverbs_poll_cq function in drivers/infiniband/core/uverbs_cmd.c in the Linux kernel before 2.6.37 does not initialize a certain response buffer, which allows local users to obtain potentially sensitive information from kernel memory via vectors that cause this buffer to be only partially filled, a different vulnerability than CVE-2010-4649.
An issue was discovered in the Linux kernel before 4.18.7. In create_qp_common in drivers/infiniband/hw/mlx5/qp.c, mlx5_ib_create_qp_resp was never initialized, resulting in a leak of stack memory to userspace.
Integer underflow in the irda_getsockopt function in net/irda/af_irda.c in the Linux kernel before 2.6.37 on platforms other than x86 allows local users to obtain potentially sensitive information from kernel heap memory via an IRLMP_ENUMDEVICES getsockopt call.
The function hso_get_config_data in drivers/net/usb/hso.c in the Linux kernel through 4.19.8 reads if_num from the USB device (as a u8) and uses it to index a small array, resulting in an object out-of-bounds (OOB) read that potentially allows arbitrary read in the kernel address space.
In pam/gkr-pam-module.c in GNOME Keyring before 3.27.2, the user's password is kept in a session-child process spawned from the LightDM daemon. This can expose the credential in cleartext.
The eql_g_master_cfg function in drivers/net/eql.c in the Linux kernel before 2.6.36-rc5 does not properly initialize a certain structure member, which allows local users to obtain potentially sensitive information from kernel stack memory via an EQL_GETMASTRCFG ioctl call.
The patch_instruction function in hw/i386/kvmvapic.c in QEMU does not initialize the imm32 variable, which allows local guest OS administrators to obtain sensitive information from host stack memory by accessing the Task Priority Register (TPR).
The installation process in IBM Security AppScan Enterprise 8.x before 8.6.0.2 iFix 003, 8.7.x before 8.7.0.1 iFix 003, 8.8.x before 8.8.0.1 iFix 002, and 9.0.x before 9.0.0.1 iFix 001 on Linux places a cleartext password in a temporary file, which allows local users to obtain sensitive information by reading this file.
An information disclosure vulnerability exists in the ARM SIGPAGE functionality of Linux Kernel v5.4.66 and v5.4.54. The latest version (5.11-rc4) seems to still be vulnerable. A userland application can read the contents of the sigpage, which can leak kernel memory contents. An attacker can read a process’s memory at a specific offset to trigger this vulnerability. This was fixed in kernel releases: 4.14.222 4.19.177 5.4.99 5.10.17 5.11
IBM Security Guardium 11.2 stores user credentials in plain clear text which can be read by a local user. IBM X-Force ID: 195770.
An issue was discovered in the proc_pid_stack function in fs/proc/base.c in the Linux kernel through 4.18.11. It does not ensure that only root may inspect the kernel stack of an arbitrary task, allowing a local attacker to exploit racy stack unwinding and leak kernel task stack contents.
IBM GSKit (IBM DB2 for Linux, UNIX and Windows 9.7, 10.1, 10.5, and 11.1) uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 139073.
The sock_getsockopt function in net/core/sock.c in the Linux kernel before 2.6.28.6 does not initialize a certain structure member, which allows local users to obtain potentially sensitive information from kernel memory via an SO_BSDCOMPAT getsockopt request.
A missing address check in the callers of the show_opcodes() in the Linux kernel allows an attacker to dump the kernel memory at an arbitrary kernel address into the dmesg log.
The spectre_v2_select_mitigation function in arch/x86/kernel/cpu/bugs.c in the Linux kernel before 4.18.1 does not always fill RSB upon a context switch, which makes it easier for attackers to conduct userspace-userspace spectreRSB attacks.
The Linux kernel before 5.17.9 allows TCP servers to identify clients by observing what source ports are used. This occurs because of use of Algorithm 4 ("Double-Hash Port Selection Algorithm") of RFC 6056.
The tc_fill_tclass function in net/sched/sch_api.c in the tc subsystem in the Linux kernel 2.4.x before 2.4.37.6 and 2.6.x before 2.6.31-rc9 does not initialize certain (1) tcm__pad1 and (2) tcm__pad2 structure members, which might allow local users to obtain sensitive information from kernel memory via unspecified vectors.
IBM Security Verify Information Queue 1.0.6 and 1.0.7 could disclose highly sensitive information to a local user due to inproper storage of a plaintext cryptographic key. IBM X-Force ID: 198187.
NVIDIA GPU and Tegra hardware contain a vulnerability in the internal microcontroller which may allow a user with elevated privileges to utilize debug mechanisms with insufficient access control, which may lead to information disclosure.
NVIDIA GPU and Tegra hardware contain a vulnerability in the internal microcontroller which may allow a user with elevated privileges to access debug registers during runtime, which may lead to information disclosure.
If a user saved passwords before Firefox 58 and then later set a master password, an unencrypted copy of these passwords is still accessible. This is because the older stored password file was not deleted when the data was copied to a new format starting in Firefox 58. The new master password is added only on the new file. This could allow the exposure of stored password data outside of user expectations. This vulnerability affects Firefox < 62, Firefox ESR < 60.2.1, and Thunderbird < 60.2.1.
A bug in Bluez may allow for the Bluetooth Discoverable state being set to on when no Bluetooth agent is registered with the system. This situation could lead to the unauthorized pairing of certain Bluetooth devices without any form of authentication. Versions before bluez 5.51 are vulnerable.
cloud-init through 19.4 relies on Mersenne Twister for a random password, which makes it easier for attackers to predict passwords, because rand_str in cloudinit/util.py calls the random.choice function.
In cloud-init through 19.4, rand_user_password in cloudinit/config/cc_set_passwords.py has a small default pwlen value, which makes it easier for attackers to guess passwords.
An issue was discovered in the Linux kernel before 5.16.12. drivers/net/usb/sr9700.c allows attackers to obtain sensitive information from heap memory via crafted frame lengths from a device.
The edge_bulk_in_callback function in drivers/usb/serial/io_ti.c in the Linux kernel before 4.10.4 allows local users to obtain sensitive information (in the dmesg ringbuffer and syslog) from uninitialized kernel memory by using a crafted USB device (posing as an io_ti USB serial device) to trigger an integer underflow.
An issue was discovered in drivers/usb/gadget/function/rndis.c in the Linux kernel before 5.16.10. The RNDIS USB gadget lacks validation of the size of the RNDIS_MSG_SET command. Attackers can obtain sensitive information from kernel memory.
LightDM through 1.22.0, when systemd is used in Ubuntu 16.10 and 17.x, allows physically proximate attackers to bypass intended AppArmor restrictions and visit the home directories of arbitrary users by establishing a guest session.
The parse_rock_ridge_inode_internal function in fs/isofs/rock.c in the Linux kernel before 3.18.2 does not validate a length value in the Extensions Reference (ER) System Use Field, which allows local users to obtain sensitive information from kernel memory via a crafted iso9660 image.
Sensitive information disclosure due to insecure folder permissions. The following products are affected: Acronis Cyber Protect 16 (Linux, Windows) before build 37391.
Overlayfs did not properly perform permission checking when copying up files in an overlayfs and could be exploited from within a user namespace, if, for example, unprivileged user namespaces were allowed. It was possible to have a file not readable by an unprivileged user to be copied to a mountpoint controlled by the user, like a removable device. This was introduced in kernel version 4.19 by commit d1d04ef ("ovl: stack file ops"). This was fixed in kernel version 5.8 by commits 56230d9 ("ovl: verify permissions in ovl_path_open()"), 48bd024 ("ovl: switch to mounter creds in readdir") and 05acefb ("ovl: check permission to open real file"). Additionally, commits 130fdbc ("ovl: pass correct flags for opening real directory") and 292f902 ("ovl: call secutiry hook in ovl_real_ioctl()") in kernel 5.8 might also be desired or necessary. These additional commits introduced a regression in overlay mounts within user namespaces which prevented access to files with ownership outside of the user namespace. This regression was mitigated by subsequent commit b6650da ("ovl: do not fail because of O_NOATIMEi") in kernel 5.11.
IBM Security Guardium 11.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 174852.
IBM Spectrum Protect Plus 10.1.0 through 10.1.6 may allow a local user to obtain access to information beyond their intended role and permissions. IBM X-Force ID: 193653.
IBM WebSphere Application Server 7.0, 8.0, 8.5, and 9.0 could allow a local user with specialized access to obtain sensitive information from a detailed technical error message. This information could be used in further attacks against the system. IBM X-Force ID: 185370.
IBM Security Guardium Insights 2.0.2 stores user credentials in plain in clear text which can be read by a local privileged user. IBM X-Force ID: 184861.
ifconfig, when used on the Linux kernel 2.2 and later, does not report when the network interface is in promiscuous mode if it was put in promiscuous mode using PACKET_MR_PROMISC, which could allow attackers to sniff the network without detection, as demonstrated using libpcap.
Incorrect error handling in the set_mempolicy and mbind compat syscalls in mm/mempolicy.c in the Linux kernel through 4.10.9 allows local users to obtain sensitive information from uninitialized stack data by triggering failure of a certain bitmap operation.
qmail-verify as used in netqmail 1.06 is prone to an information disclosure vulnerability. A local attacker can test for the existence of files and directories anywhere in the filesystem because qmail-verify runs as root and tests for the existence of files in the attacker's home directory, without dropping its privileges first.
On desktop, Ubuntu UI Toolkit's StateSaver would serialise data on tmp/ files which an attacker could use to expose potentially sensitive data. StateSaver would also open files without the O_EXCL flag. An attacker could exploit this to launch a symlink attack, though this is partially mitigated by symlink and hardlink restrictions in Ubuntu. Fixed in 1.1.1188+14.10.20140813.4-0ubuntu1.
A locking inconsistency issue was discovered in the tty subsystem of the Linux kernel through 5.9.13. drivers/tty/tty_io.c and drivers/tty/tty_jobctrl.c may allow a read-after-free attack against TIOCGSID, aka CID-c8bcd9c5be24.
An information disclosure vulnerability exists in the /proc/pid/syscall functionality of Linux Kernel 5.1 Stable and 5.4.66. More specifically, this issue has been introduced in v5.1-rc4 (commit 631b7abacd02b88f4b0795c08b54ad4fc3e7c7c0) and is still present in v5.10-rc4, so it’s likely that all versions in between are affected. An attacker can read /proc/pid/syscall to trigger this vulnerability, which leads to the kernel leaking memory contents.
Automox Agent prior to version 37 on Windows and Linux and Version 36 on OSX could allow for a non privileged user to obtain sensitive information during the install process.
An issue was discovered in romfs_dev_read in fs/romfs/storage.c in the Linux kernel before 5.8.4. Uninitialized memory leaks to userspace, aka CID-bcf85fcedfdd.
An issue was discovered in fs/io_uring.c in the Linux kernel before 5.6. It unsafely handles the root directory during path lookups, and thus a process inside a mount namespace can escape to unintended filesystem locations, aka CID-ff002b30181d.
The check_alu_op() function in kernel/bpf/verifier.c in the Linux kernel through v5.16-rc5 did not properly update bounds while handling the mov32 instruction, which allows local users to obtain potentially sensitive address information, aka a "pointer leak."